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Abstract— With continued scaling, reliability is emerging as
a critical challenge for the designers of digital circuits. The
challenge stems in part from the lack of computationally efficient
techniques for analyzing and optimizing circuits for reliability.
To address this problem, we propose an exact analysis method
based on circuit transformations. Also, we propose a hybrid
method that combines exact analysis with probabilistic measures
to estimate reliability. We use such measures in a rewiring-based
optimization framework to optimize reliability. Our hybrid
approach offers a speedup of56X when compared to a pure
Monte Carlo simulation-based approach with only a3.5% loss in
accuracy. Our optimization framework improves reliability by
about 10% accompanied by a6.9% reduction in circuit area 1.

Keywords— Reliability, Testing, and Fault-Tolerance, Opti-
mization, Automatic Synthesis

I. INTRODUCTION

The continued scaling of silicon-based systems in the
deep nanometer regime presents numerous technological chal-
lenges. Issues such as thermal fluctuations, quantum effects
and radiation strikes manifest themselves as transient errors.
These are beginning to affect the functionality and reliability
of devices [1], [2], [3]. The impact of transient errors on
combinational circuits is projected to be as severe as that on
memory elements in the near future [4]. To make matters
worse, the failure rates of emerging technologies such as
quantum dots and molecular devices are expected to be
significantly higher than those of CMOS devices. We will
soon be at a point where circuit reliability will be a dominant
parameter in the design of circuits. To address this concern,
we need fast and accurate techniques for estimating relia-
bility. We need to incorporate these techniques into efficient
strategies for optimizing circuits for reliability.

Previous methods that have considered reliability es-
timation with transient errors are computationally inten-
sive [1], [5], [6]. Some of the work in the area has had a
technology-dependent focus, relying on the electrical charac-
teristics of circuit elements [3], [7]. This kind of technology
dependence limits the viability for logic-level synthesis. Our
contributions in this work are twofold. Firstly, in Section III,
we develop efficient reliability estimation techniques using
a new signal probability propagation method. Secondly, in
Section V, we make use of these techniques to optimize
circuit for reliability with an ATPG-based rewiring framework
applied during logic synthesis.

II. FAULT MODELING

Our aim is to develop logic-level algorithms to estimate
and optimize circuit reliability. Accordingly, we adopt the
technology-independent fault model used in [1], [2], [5] and
[6]. Transient faults are modeled as bit-flips at the outputs of
gates and they are assumed to last for exactly 1 clock cycle.

1This work was funded in part by NSF, under grant number CCF-0347891

The probability with which a gate’s output is flipped is its
failure probability.

To model a gate G that has a failure probability of ξ, we
connect a dummy XOR gate at the output of G. The second
input of the dummy XOR gate is connected to a signal, ei that
has a signal probability of ξ. This ensures that the output of
G is flipped exactly with probability of ξ. G and the dummy
XOR gate together model the faulty gate.

To estimate circuit reliability, first we transform the original
circuit by adding the dummy XOR gates mentioned above
and then we compare the primary outputs of the transformed
faulty circuit to those of the original fault-free circuit. The
setup that we use for reliability computation is shown in
Figure 1. In this figure, the xi’s form the inputs to the circuit.

Transformed Faulty 
Circuit

Original Circuit

P(failure)=p(f=1)

fX1..n
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Fig. 1. Setup to Estimate Circuit Reliability

Each gate gi has a dummy input ξi having a signal probability
equal to its failure rate. After transforming the circuit, we
compute signal probabilities of the outputs of the fault-free
and faulty versions of the circuit. The signal probability of
the final dummy XOR gate, f in Figure 1, gives the failure
rate and consequently the reliability of the circuit. For multi-
output circuits, we have a dummy XOR gate for each output
and perform the disjunction of the XOR outputs to compute
the overall circuit failure rate. In the next section we present
a technique for computing circuit reliability using this setup.

III. ESTIMATING CIRCUIT RELIABILITY

As explained in the previous section, we convert the
problem of estimating a circuit’s reliability into the problem
of calculating the signal probabilities of all of its internal
nodes. Many techniques have been proposed to compute
signal probabilities in combinational circuits [8]. At one end
of the spectrum, there are simulation-based methods which
apply large numbers of input vectors. At the other end of the
spectrum, there are probabilistic methods that entail propagat-
ing probabilities based on simple rules. Probabilistic methods
are, in general, more efficient than simulation-based methods.
Unfortunately, they suffer from low accuracy due the problem
of signal correlations. Several studies have addressed this
issue [9], [10], [11]. Although promising, these methods are
not accurate enough to be used practically [12]. In [13],
the authors propose an exact technique to evaluate signal
probability. However, for large circuits their exact method
is intractable. [14] partially applies the exact technique to
circuits by considering signal reconvergences up to a specified
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logic depth; beyond this depth, all signals are assumed to be
uncorrelated. This results in inaccuracies.

Our ultimate objective is to estimate reliability of nodes in
a circuit and use that information in an optimization frame-
work to improve overall circuit reliability. The optimization
procedure may involve several iterations where reliability
is evaluated to achieve good results. In this context, it is
crucial that we we develop fast and accurate techniques to
estimate reliability. To this end, we have developed a hybrid
approach that combines the exact approach with probabilistic
techniques.

A. Preliminaries

To better understand our hybrid approach, in this section we
review background information about exact and probabilistic
techniques.

1) Exact Approach: The exact method proposed in [13]
evaluates signal probability of a node as a polynomial func-
tion of the signal probabilities of its inputs. Consider a logic
circuit with n inputs, each associated with signal probability
variables, x1, x2, · · ·xn. Let G be an AND gate with 2 inputs.
If f1(x1, · · · , xn) and f2(x1, · · · , xn) represent the functions
of the signal probabilities of its inputs, the output signal
probability is given by the function fg , such that

fg(x1, · · · , xn) = f1(x1, · · · , xn) × f2(x1, · · · , xn)

The corresponding expression for an OR gate is fg =
f1 + f2 − f1f2 and for an inverter is fg = 1 − f1. Signal
dependencies appear as exponents in these polynomials and
are suppressed to achieve accurate results. This is illustrated
in Figure 2.

In this figure, x1, x2 and x3 denote the signal probability
variables corresponding to the inputs. Note that for gate
g3, application of the probability propagation rules yields
a function x2

1.x2. This indicates that g3 acts as a site of
reconvergence for x1. The correct function at g3 is obtained
by converting fg3 to x1x2 by supressing the extra exponent
of x1. In [13], these functions are represented using BDDs
and finally the signal probability of all nodes is obtained by
performing simulations on these polynomials by assigning
Boolean values to x1 · · · , xn according to the input signal
probabilities and evaluating the mean values of the polyno-
mials.

In our framework for reliability estimation, shown in Figure
1, in addition to the primary inputs, we also have dummy
inputs(ξ′is) modeling the failure rates of gates. These can
be easily embedded into the probability propagation rules
presented in [13]. For example, let gi be a two-input AND
gate with signal probabilities at its inputs given by f1 and f2.
The signal probability of its output is given by f1f2(1−ξi)+
(1 − f1f2)ξi, where ξi is the failure probability of the gate.

The ξi variables are real numbers and are typically fixed
for gates. As a result, unlike [13], we require a convenient
way to represent a mapping from a Boolean domain to a
real domain (�+). So, we can adopt the approach in [5]
and use algebraic decision diagrams (ADDs) to represent

the polynomial function at each node. Using this method,
the evaluation of signal probabilities is exact. Unfortunately,
the method is computationally infeasible for large circuits,
especially if it is applied in the inner loop of an optimization
framework.

2) Probabilistic Approach: To mitigate the cost of the
analysis, probabilistic techniques have been widely used to
estimate signal probabilities. In this work, we apply the
idea proposed in [10] to account for signal dependencies.
There the authors introduced the notion of explicit correlation
coefficients (interchangeably referred to as correlations in
this work) between signals. The correlation coefficient, Ci,j

between two signals i and j is defined as

Ci,j =
P (ij)

P (i)P (j)
=

P (i|j)
P (i)

=
P (j|i)
P (j)

Instead of propagating polynomial functions as is done in
the exact method, probabilistic techniques work by propagat-
ing real numbers corresponding to the signal probabilities of
nodes. Probability propagation rules are augmented to include
correlation coefficients. For instance, the signal probability at
the output of a 2-input AND gate with input signal probabil-
ities given by p1 and p2 is given by p1p2C1,2, where C1,2 is
the correlation coefficient between the two inputs. For an OR
gate, the output signal probability becomes p1+p2−p1p2C1,2.

To propagate correlation coefficients, the authors assume
that the circuit’s primary inputs are independent of each other.
A topological sort algorithm is first used to levelize the circuit.
Correlations are computed for each pair of edges that cross
a level (i.e. an edge cut-set). This information is used to
compute probabilities of nodes in the next level according
to the augmented probability propagation rules. This process
continues until it reaches the output nodes. Signal correlations
between a pair of edges is computed as follows. Let f denote
the function implemented by a gate; i and j are its inputs and
y is its output. The correlation between y and another edge
m can be computed with the help of the following equations
[10].

p(y) = f(i, j)
p(y|m) = p(y)Cy,m = f(i|l, j|l)

Cy,m =
f(i|l, j|l)
f(i, j)

This method may yield the exact probabilities in certain
cases; however, in general, it is approximate since it considers
only first-order correlations. Higher-order correlations such as
two signals depending simultaneously on a third signal are
ignored. In the next section we present a hybrid approach
where we combine the features of the exact and probabilistic
techniques to develop a fast and accurate reliability estimation
algorithm.

IV. HYBRID APPROACH TO RELIABILITY COMPUTATION

In this section we develop a hybrid approach for reliability
computation that provides the scalability of the probabilistic
technique with the higher accuracy of the exact approach. It
is clear that if we can partition the circuit into a set of inde-
pendent regions, we can use the exact approach for smaller
regions which may have signal reconvergences inside them
and then combine the results using probabilistic techniques.

There are two potential challenges. The first is to identify
a set of independent regions in the circuit that are small
enough for the exact approach to be applicable. The second
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is to develop an interface between the exact and probabilistic
techniques to combine the results.

A. Identifying Independent Regions

Previous work such as [15] discussed techniques for parti-
tioning a circuit into a set of independent regions called super-
gates. These independent partitions would allow the exact
technique to be applied for smaller regions of the circuit.
However, from our studies as well as that presented in [14],
we note that in real circuits, the sizes of these super-gates
are still large. This adversely impacts the applicability of the
exact approach. Also, the technique in [15] depends on finding
articulation points of the circuit graph. However, after we
apply the circuit transformation in Figure 1, the circuit does
not have any articulation points.

Ideally, all the sources of reconvergence at a node should
be considered exactly in order to accurately evaluate the
signal probability of the node. However, this is computa-
tionally infeasible. So, we relax this condition and use an
approximation where we consider only the sources of first
reconvergence for every site of reconvergence. The rationale
behind this assumption is the observation that the effect of
signal dependencies on a node due to reconvergent fanouts
decreases as we move away from the node in its transitive
fanin-cone. The following definitions are useful in describing
the notion of a source of first reconvergence for a node.

Definition 1 (Source of Reconvergence): A node u is a
source of reconvergence for v if there are at least two pairwise
edge disjoint u � v paths in the circuit graph

Definition 2 (Sources of first Reconvergence): If S is the
set of all sources of reconvergence for u, then the sources of
first reconvergence for u is given by the set Sfirst,u defined
as

Sfirst,u = S − {vi|∃vi � vj ; vi, vj ∈ S; i �= j}
In our approach, we redefine the notion of a super-gate to
represent a maximal pseudo-gate rooted at a site of recon-
vergence. It has the sources of first reconvergence as its
inputs. Note that, unlike the traditional super-gate, the inputs
to our super-gate may not be independent of each other. The
definitions are illustrated in Figure 3.

Applying Definition 1 to gate g12 in the figure, {g1, g2, g8}
is the set of all sources of reconvergence at g12. However, a
path exists from g1 to g2 and g8, so g1 is removed from this
list to form the set Sfirst,12. For each super-gate rooted at a
reconvergent node, we include only the set of sources of first
reconvergence as its input to reduce its size. We treat all gates
on the set of pairwise edge disjoint paths from the sources of
first reconvergence to the reconvergent node as a super-gate
rooted at the reconvergent node. The set {g2, g4, · · · , g12}
forms the super-gate rooted at g12 in Figure 3 (enclosed in a
dashed line) and g2 and g8 supply its inputs.

We can identify these super-gates by performing depth-first
graph traversals from candidate sources in a reverse topolog-
ical order while keeping track of signal reconvergences.
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Fig. 4. Evaluating Signal Probability using a Hybrid Approach

B. Combining Symbolic and Probabilistic Techniques

We apply the probabilistic approach for all non-
reconvergent nodes and the exact approach for the super-
gates rooted at reconvergent nodes. The treatment of non-
reconvergent nodes is the same as in Section III-A.2. The
exact technique cannot be directly applied to super-gates for
evaluating the signal probabilities of reconvergent nodes. The
rest of the section describes how to adapt the exact and
probabilistic techniques for this.

To capture the effects of signal correlation from the sources
of first reconvergence for a super-gate, we assign a Boolean
variable to each source of reconvergence. This is similar to
the treatment of primary input nodes in the exact approach.
The difference in the hybrid approach is that we may have
gates other than sources of first reconvergence that supply
inputs to some gates inside the super-gate. We treat these
inputs as pseudo-inputs. Instead of assigning separate Boolean
variables for these inputs, we treat them as real numbers
representing probability values. This minimizes the size of the
decision diagram that is needed to represent the polynomial
function representing the signal probability at the root of the
super-gate.

Note that in the exact approach, the coefficients of each
term in the polynomial function is always either 1,-1 or 0.
(See 2.) However, this is no longer true in our work since we
consider the pseudo-inputs as real numbers. The coefficients
for the polynomial representing the signal probability of the
super-gate root may take any value.

Since we treat the pseudo-inputs as real numbers, we may
lose some correlation information if they are correlated to
some of the sources of first re-convergence at an upstream
node. To capture this effect, we embed the correlation be-
tween pseudo-inputs and signals present in the super-gate
while building the decision diagram of the super-gate. Cor-
relation information is stored as a part of the function being
evaluated at the super-gate root. This function is stored as an
ADD.

To compute the signal probability of the root node of a
super-gate, we generate Boolean vectors for the sources of
first reconvergence based on their probabilities (these are
already known since we proceed in a topological order) and
evaluate the decision diagram of the root node. The mean
of the decision diagram values at the root node gives its
probability.

We use the example in Figure 4 to illustrate the process
of building the ADD of a super-gate, embedding correlation
information and finding probabilities of reconvergent nodes.
Nodes x, b and c constitute the super-gate rooted at c. Node
x is a source of first reconvergence and is given a separate
Boolean variable in the decision diagram. Here a is a pseudo-
input and is treated as a real number. Cx,a (=1 in the example
since x and a are independent) is the correlation between the
pseudo-input and a source of first reconvergence. Assuming
the gates are fault-free, the probability of c is given by the
function,

p(c) = xp(a)Cx,a = x.
1
4
.1 =

x

4



We store this function as an ADD at node c. To evaluate
this function, we apply Boolean values 0 and 1 to x with
a probability of 0.5 each since p(x) = 0.5 and evaluate the
decision diagram at c(p(c)). This gives the correct probability
of c as 1/8.

Evaluating the probability of the root node of a super-
gate this way will lead to inaccuracies if the sources of first
reconvergence themselves are correlated (gates g2 and g8 for
instance in Figure 3). We have developed a heuristic to correct
this problem.

Suppose there are k sources of first reconvergence for a
super-gate. Let n1 · · ·nk be the k unique symbolic Boolean
variables we assign them. We order these nodes according
to their levels in the circuit graph. When we evaluate the
probability of the super-gate root, we start from n1 and assign
it either 0 or 1 based on its probability. If we have assigned
values to m nodes, the probability for the (m + 1)st node is
adjusted as the conditional probability based on the previous
m assignments as follows.
padjusted(m + 1) = p(nm+1|(n1 = b1, · · · , nm = bm)

, bi ∈ {0, 1}) (1)

If e denotes the event that n1 = b1,n2 = b2,· · · nm = bm,
(1) reduces to

padjusted(m + 1) = p(nm+1).Cnm+1,e (2)

We consider only first order correlations between sources of
first reconvergence. So, we approximate the correlation term
in (2) as

Cnm+1,e ≈ Cnm+1,n1=b1 × · · · × Cnm+1,nm=bm

Cnm+1,ni=1 is computed the same way as in Section III-A.2.
Cnm+1,ni=0 is given by

Cnm+1,ni=0 = p(nm+1).

(
1 − p(ni)Cnm+1,ni=1

)

(1 − p(ni))
(3)

We generate Boolean vectors for the sources of first reconver-
gence based on these adjusted probabilities and then evaluate
the probability of the super-gate root by using the method
described earlier in this section.

The overall circuit reliability is obtained by applying the
probabilistic approach for all non-reconvergent nodes and by
applying the technique described in this section for reconver-
gent nodes in the circuit.

In the next section we describe our experimental setup to
validate our work and compare our approach with the exact
and probabilistic techniques described in this section.

C. Validating the Hybrid Approach

To validate the accuracy and efficiency of our hybrid
approach, we implemented reliability estimation techniques
based on the exact, probabilistic and hybrid signal proba-
bility evaluation approaches and compared them to a Monte
Carlo-based fault injection framework. For each input vector
sample in the Monte Carlo simulation, we can perform fault
simulations and inject faults at gates based on their failure
probabilities. We assume that the primary inputs are all
independent2 with a probability of 0.5 and failure rate of
gates, ξ is 0.005. In our symbolic and hybrid reliability
computation techniques, we sample the input space of the
function being evaluated until the final probability converges.

2We can easily extend our work to include the case where inputs are
correlated

We implemented all techniques presented in this work
in C++ and used benchmark circuits from the LGSynth93
benchmark suite. The results are presented in Table I. Exact,
Prob, Hyb and Sim refer to exact, probabilistic, hybrid and
Monte Carlo approaches to reliability estimation, respectively.
From the results, it is clear that the exact approach works
well for small circuits but is infeasible for larger circuits
due to the exponential increase in the size of the decision
diagrams involved. So, the exact approach cannot be used in
an optimization framework. We note that the sizes of circuits
that we have used are larger than those demonstrated in [6]
and [5].

The errors of the probabilistic and hybrid approaches are
about 6.4% and 3.5% on average, respectively, when com-
pared with results from Monte Carlo-based fault injection.
The maximum error of the hybrid approach is 8.31% as
opposed to 17.16% for the probabilistic approach indicating
that the hybrid approach is more consistent overall. The errors
of both techniques increase with the size of circuits. For the 4
largest circuits in Table I, the average errors are 10.4% for the
probabilistic approach and 4.2% for the hybrid approach. An
increase in the estimation error for large circuits is intuitive
because of a greater likelihood of signal reconvergences in
the circuit. This may lead to more approximations in the
computation. Both techniques still perform reasonably well.

From Table I, it is seen that on average, the exact technique
performs very well for small circuits since the decision
diagrams involved are smaller and evaluating them is easier
than propagating correlations across edge cut-sets. Over all
circuits used, the probabilistic approach was the most effi-
cient. This is expected since our hybrid approach involves
all the computation involved in the probabilistic approach
in addition to identifying and evaluating super-gates. When
compared to the Monte Carlo approach, the probabilistic and
hybrid approaches offer average speedups of 131X and 56X ,
respectively.

In the next section, we present a rewiring-based reliability
optimization framework based on our hybrid reliability eval-
uation technique.

V. REWIRING-BASED RELIABILITY OPTIMIZATION

Reliability can be optimized by selectively hardening gates
that are sensitive to transient errors by up sizing them. We
observe that the topology of circuits also has a significant
impact on reliability. This is demonstrated in Figure 5, which
shows two circuit realizations of the same logic function. The
difference in their reliabilities is about 5%.
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(a) Circuit A, Reliability : 0.927 (b) Circuit B, Reliability : 0.884

Fig. 5. Reliability for different circuit topologies
The potential of rewiring-based approaches to optimize

reliability is illustrated in Figure 6. The wire c ⇒ g2 is
replaced by g1 ⇒ g5 after rewiring. This makes g2 redundant;
it is removed from the circuit. We observe that the failure rate
of the circuit falls from 0.0998 to 0.0611 after the rewiring
transformation. There are two main reasons for this. Firstly,
rewiring reduces the number of gates through which c passes
through before reaching O2. This reduces the chances of
errors in the path. Secondly, as a by-product of rewiring, we



TABLE I

RESULTS OF RELIABILITY ESTIMATION

Circuit Reliability Runtime (sec) Error(%)
Exact Prob Hyb Sim Exact Prob Hyb Sim Prob Hyb Sim

fulladder 0.7451 0.7642 0.7332 0.7482 0.1 0.1 0.1 18.98 2.56 1.59 0.42
C17 0.8315 0.8577 0.8519 0.8251 0.1 0.1 0.2 17.54 3.15 2.44 0.76
b1 0.8057 0.7988 0.8015 0.1 0.1 0.1 18.61 0.14 0.99 0.66
cm42a 0.9085 0.8584 0.8913 0.9094 0.1 0.2 0.3 48.22 5.51 1.89 0.09
cm138a 0.9114 0.9078 0.9078 0.9152 0.1 0.4 0.2 52.23 0.39 0.39 0.41
tcon 0.8237 0.8561 0.7985 0.8312 0.1 0.5 0.5 56.61 3.92 3.06 0.90
count 0.6840 0.7801 0.7152 0.6903 0.4 0.77 1.49 317.33 14.05 4.56 0.93
c8 0.7601 0.7626 0.6969 0.7527 0.2 0.83 1.68 361.98 0.33 8.31 0.96
sqrt 0.5287 0.5881 0.5542 0.5295 0.2 0.48 1.86 343.79 11.21 4.82 0.14
term1 0.7392 0.7547 0.7429 0.7342 8.06 5.38 10.82 949.02 2.09 0.50 0.68
alu4 0.4436 0.4786 0.4498 0.4494 16.14 14.06 44.76 1589.01 7.88 1.38 1.29
C432 x 0.3543 0.3835 0.4136 x 4.11 8.23 745.43 14.33 7.27 x
too large x 0.1861 0.1709 0.1588 x 22.76 45.16 1994.92 17.16 7.59 x

Mean 2.33 3.83 8.87 501.05 6.37 3.45

a
b

c

d

e

f

g2

g1

g6

g3

g4

g5

=0.05

=0.05

=0.05

=0.05

=0.05
=0.05

o1

o2

o3

Overall Circuit Failure Rate = 0.0998

(a) Original Circuit

a

b
c

d

e

f

=0.05

=0.05

=0.05

=0.05
=0.05

g1

g3

g6

g4

g5

o1

o2

o3

Overall Circuit Failure Rate = 0.0611

(b) Circuit after Rewiring

Fig. 6. Reliability for different circuit topologies

were able to reduce the number of gates in the circuit. This
automatically reduces the failure rate. Additionally, the area
that is saved by rewiring can be used to further reduce the
failure rate by selective gate up sizing.

A. Rewiring Framework

We adopt an ATPG based rewiring approach for incre-
mentally restructuring a circuit to improve its reliability. The
rewiring engine first identifies a set of mandatory assignments
to nodes to propagate a signal on the wire to be replaced
to the outputs. Then, a set of candidate wires which, when
added to the circuit, would make the target wire redundant
are identified. Finally, the target wire is replaced by one of
the candidate wires. The ability to rewire signals as well as
the choice of available candidate connections depend on the
number of mandatory assignments that can be identified.

Our rewiring engine is similar to [16], which uses direct
implication to uncover mandatory assignments. To uncover
more mandatory assignments we provide a parameterized
backtracking procedure where we recursively perform dy-
namic implication to a few logic levels as specified by the
user. Implicants uncovered this way are verified by casting
the circuit as an instance of a SAT problem and checking
the implicants uncovered by backtracking for consistency. We
also use the blocking clauses generated by the SAT solver to
uncover more implicants. This is again controlled by a user
parameter in order to trade off runtime with the number of
implicants uncovered.

We can optimize reliability by first identifying nodes in
the circuit that have low reliability. We can then rewire
signals connecting to these nodes by replacing them with

alternate wires driven by more reliable sources in the circuit.
If we select the nodes and thereby the wires to replace
intelligently, the overall circuit reliability can be improved.
We have developed cost metrics to help us identify target
wires to be replaced as well as their alternate wires. We
explain these metrics in Section V-A.1.

1) Cost metrics for rewiring: Our approach is based on
identifying nodes with low reliability. We modify the relia-
bility estimation setup shown in Figure 1 to insert dummy
XOR gates for every node in the original circuit to obtain the
reliability of each node in addition to the overall reliability.
We also use the concept of observability of a node, which is
a measure of the likelihood that the logic value at the node is
visible at the output. We use the approach in [10] to evaluate
the observabilities of all nodes in the circuit as probabilistic
measures.

We use the reliabilities and observabilities of internal nodes
in the circuit to select a target node according to the following
cost measure:

Ct(N) = (1−αt−βt).(pfail(N))+αt.obser.(N)+βt.
lN

Lmax

where Ct is the cost of the target node, pfail(N) is its failure
probability, observ.(N) is its observability, lN is its level in
the circuit and Lmax is the maximum depth of the circuit. αt

and βt are parameters that control the relative importance of
these three factors and are tuned experimentally. The terms
containing observability and level of the node give importance
to nodes that are highly visible and close to the output. This
is important to ensure that significant effort is not wasted on
nodes that may have poor reliabilities but whose errors are



TABLE II

RESULTS OF REWIRING OPTIMIZATION

Circuit Initial Rel Area Final Rel. Final Area Rel Impr Area Impr

sqrt8 0.5293 1068 0.5589 1010 5.6 5.43
C432 0.4139 1420 0.5549 1248 34.08 12.11
alu4 0.4492 4554 0.5054 448 12.53 2.33
term1 0.7336 2966 0.7972 2392 8.68 19.35
too large 0.1567 6078 0.1670 5962 6.58 1.91
count 0.6983 858 0.8095 678 15.93 20.98
tcon 0.8352 210 0.9334 194 11.76 7.62
cm42a 0.8997 140 0.9482 132 5.4 5.71

Mean 10.41 6.9
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Fig. 7. Rewiring flow
unlikely to propagate to the outputs. We select the target node
based on this cost measure and try to rewire the inputs to this
node in the decreasing order of their failure rates.

We select the source of the candidate wires based on the
following cost measure.

Cs(N) = (1 − βs).(prel(N)) + βs(1 − ln
Lmax

)

Where prel(N) is the reliability of gate N, i.e. 1− pfail(N).
The other terms have a similar meaning to the target node
described above. We select the source nodes of the candidate
wires to have high reliability and close to the inputs. This will
reduce the chances of an error on the source of the candidate
wire. We give preference to nodes that are closer to the output
when selecting the destination node of the candidate wire.

After selecting the target and candidate wires, we replace
the target wire by the candidate wire and update the circuit.
For performance reasons, we re-evaluate circuit reliabilities
and observabilities after every k updates. We repeat this
process until either there are no more rewiring options or until
the overall reliability stops improving for a few iterations. Our
rewiring flow is shown in Figure 7.
B. Rewiring Results

The results of our rewiring-based reliability optimization
framework is presented in Table II. The experimental setup
is similar to the one presented in Section IV-C. A Monte
Carlo simulation-based reliability estimation approach is used
to evaluate the pre- and post-optimization reliabilities listed in
the table under column Initial Rel and Final Rel, respectively.

Our hybrid reliability estimation approach is used in the
rewiring framework shown in Figure 7. The initial and final
circuit area is reported in columns Area and Final Area,
respectively. We assume that all gates are made of minimum
width transistors and report the transistor count as the area
measure.

Our rewiring based optimization improves overall circuit
reliability by about 10% on average with a 6.9% improvement
in area. This demonstrates that rewiring is an effective strat-
egy for optimizing circuit reliability. Furthermore, we obtain
improvements in both area and reliability indicating runtime
is the only penalty of this approach. The savings in area can
be used to further improve reliability by selectively upsizing
gates that are more sensitive to transient errors.
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