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The accepted wisdom is that combinational circuits must have acyclic (i.e., feed-forward) topologies. Yet
simple examples suggest that this is incorrect. In fact, introducing cycles (i.e., feedback) into combinational
designs can lead to significant savings in area and in delay. Prior work described methodologies for synthe-
sizing cyclic circuits with Sum-Of-Product (SOP) and Binary-Decision Diagram (BDD)-based formulations.
Recently, techniques for analyzing and mapping cyclic circuits based on Boolean satisfiability (SAT) were
proposed. This article presents a SAT-based methodology for synthesizing cyclic dependencies. The strat-
egy is to generate cyclic functional dependencies through a technique called Craig interpolation. Given a
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Experiments on benchmark circuits demonstrate the effectiveness of the approach.
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1. INTRODUCTION

1.1. Cyclic Combinational Circuits

A common misconception is that combinational circuits must have acyclic topologies;
that is to say, they must be designed without any loops or feedback paths. Indeed,
any acyclic circuit is clearly combinational: once the current values of the inputs are
set, the signals propagate to the outputs; the outputs are determined regardless of the
prior values on the wires, making them independent of the past sequence of inputs.
The idea that “combinational” and “acyclic” are synonymous terms is so thoroughly
ingrained that many textbooks provide the latter as a definition of the former (e.g.,
Katz [1992, page 14]; and Wakerly [2000, page 193]).

And yet, cyclic circuits can be combinational. Consider the truth table of values and
the functions shown in Figure 1. The definition of these functions is cyclic. In spite of
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Fig. 1. Example: A cyclic circuit with 4 primary inputs and 3 primary outputs.

Fig. 2. Network in Figure 1 with a = 1, b = 0, c = 1, d = 0.

this, the network is combinational: it produces the correct outputs, regardless of the
initial state and independently of all timing assumptions. To see this, consider specific
input values. For instance, with a = 1, b = 0, c = 1, d = 0, the network simplifies to
that shown in Figure 2, yielding the correct values for f0, f1 and f2. With a = 1, b =
1, c = 0, d = 0, the network simplifies to that shown in Figure 3, again yielding the
correct values for f0, f1, and f2. The reader may verify that the network implements
the correct output values for all input values.

In previous work, we showed that combinational circuits can be optimized signifi-
cantly if cycles are introduced [Riedel and Bruck 2003]. The intuition behind this is
that, with feedback, all nodes can potentially benefit from work done elsewhere; with-
out feedback, nodes at the top of the hierarchy must be constructed from scratch. We
proposed a methodology for synthesizing such circuits and demonstrated that it pro-
duces significant improvements in area and in delay. Cycles are introduced in the
restructuring and minimization phases of logic synthesis at the level of functional
dependencies.

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 4, Article 44, Publication date: October 2012.



The Synthesis of Cyclic Dependencies with Boolean Satisfiability 44:3

Fig. 3. Network in Figure 1 with a = 1, b = 1, c = 0, d = 0.

1.2. Prior and Related Work

Leon Stok lamented that EDA tools were rejecting cyclic designs because there was no
way to validate them [Stok 1992]. In response, Malik discussed analysis techniques
for cyclic combinational circuits [Malik 1994]. His approach was topological, begin-
ning with a transformation from a cyclic specification to an equivalent acyclic one.
Later Shiple refined and formalized Malik’s results and extended the concepts to com-
binational logic embedded in sequential circuits [Shiple 1996].

More recently, Neiroukh and Edwards discussed analysis strategies targeting cyclic
circuits that are produced inadvertently during design [Edwards 2003; Neiroukh et al.
2008]. Following a strategy similar to Malik’s, they proposed techniques for transform-
ing valid cyclic circuits into functionally equivalent acyclic circuits [Neiroukh et al.
2008]. Their algorithm enumerates partial Boolean assignments that break the feed-
back paths in cyclic circuits. The enumeration continues until enough assignments are
found to cover the entire input space. Based on these partial assignments, acyclic frag-
ments are assembled into a new acyclic circuit. As a starting point, they presume that
the given circuit is combinational and correctly mapped. The enumeration is explicit
and so the algorithm is potentially very slow, as it searches through an exponentially
large space of partial assignments.

We were the first to suggest a method for synthesizing cyclic circuits [Riedel and
Bruck 2003]. We implemented the method in a package called CYCLIFY, built within
the Berkeley SIS environment [Sentovich et al. 1992]. The tool was successful: it
reduced the area of benchmark circuits by as much as 30% and the delay by as much
as 25%. However, being based on SIS, the analysis routines in CYCLIFY used Sum-
Of-Products (SOP) and Binary-Decision Diagram (BDD) representations for Boolean
functions. These representations limited the size of the circuits that could be analyzed
and optimized effectively.

Admittedly, the task of analyzing cyclic circuits is complex. Yet there is no funda-
mental obstacle to performing tasks such as verification, mapping, and timing analysis
on cyclic circuits. So-called “false-path-aware” algorithms for timing analysis take into
account false paths, providing tighter bounds on delay than purely topological methods
[Kukimoto and Brayton 1997]. The complexity of this sort of timing analysis is, in fact,
the same for cyclic circuits as for acyclic circuits [Riedel and Bruck 2004]. Early for-
mulations based on SOPs and BDDs were never up to the task, but modern SAT-based
algorithms are powerful enough to perform false-path-aware analysis.

1.3. SAT-Based Synthesis

So-called SAT-based techniques, based on heuristic solutions to the Boolean satisfi-
ability problem, have proved very successful for tasks such as logic verification and
model checking [Amla et al. 2005; Larrabee 1992]. Significantly, SAT-based algorithms
lend themselves well to incremental analysis. Often analysis and verification tasks
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Fig. 4. Three four-input lookup tables implement functions f = ab ⊕ cde and g = abc̄ ⊕ de using an acyclic
topology. The circuit’s dependency graph is shown on the right.

are applied iteratively and incrementally in a design flow: small changes are made
to improve the circuit and then it is reanalyzed. With incremental SAT solving, new
queries can take advantage of cached results of previous queries, making SAT-based
analysis very efficient [Eén and Sörensson 2003].

In recent work, we have proposed an efficient SAT-based algorithm for analyzing
and mapping cyclic circuits [Backes et al. 2008, 2011]. We perform SAT-based valida-
tion of cyclic designs at a gate level, after mapping to a library. When mapping breaks
the validity of a combinational circuit, SAT-based analysis returns satisfying assign-
ments; these assignments are used to modify the mapping in order to ensure that the
circuit remains combinational.

This article tackles the problem of synthesizing cyclic combinational circuits with
SAT-based techniques. Specifically, we apply a SAT-based technique called Craig in-
terpolation for synthesizing functional dependencies [Lee et al. 2007]. This technique
is geared towards technologies where the complexity of implementing a function is
heavily dependent on the number of support variables.

This is illustrated conceptually in Figure 4. The figure shows three functions:
f (h, c, d, e), g(h, c, d, e), and h(a, b ). Both f and g can be represented in terms of the
support variables a, b , c, d, and e. However, if f and g are to be implemented in an
acyclic topology in terms of four input lookup tables, at least one additional lookup
table must be used (in this case h(a, b )).

Whether or not a function can be represented in terms of certain support variables
can be cast as a SAT problem. If the answer is affirmative, Craig interpolation pro-
vides an implementation [Lee et al. 2007]. Figure 5 demonstrates that an alternative
representation exists for f , and g. Craig interpolation can be used to generate the
functions f (a, b , c, g) and g( f, c, d, e), and a SAT solver can verify whether or not this
representation behaves combinationally.

1.4. Organization

This article is organized as follows. Section 2 provides definitions and describes the
notation used throughout the work. Section 3 discusses the underlying circuit and
network models. Section 4 presents the core contribution of the article: a method for
generating cyclic functional dependencies via Craig interpolation. Section 5 describes
a branch-and-bound search technique for exploring the space of possible functional
dependencies in a network. Section 6 presents synthesis results on benchmarks. Fi-
nally, Section 7 discusses future directions of research.
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Fig. 5. Two four-input lookup tables implement functions f = ab ⊕ cde and g = abc̄ ⊕ de using a cyclic
topology. The circuit’s dependency graph is shown on the right.

2. DEFINITIONS AND NOTATION

We use the standard notation: addition (+) denotes disjunction (OR), multiplication (·),
denotes conjunction (AND), an ⊕ denotes inequivalence (exclusive OR), and an overbar
(x̄) denotes negation (NOT). The restriction operation (also known as the cofactor) of a
function f with respect to a variable x,

f |x=v,

refers to the assignment of the constant value v ∈ {0, 1} to x. A function f depends
upon a variable x iff f |x=0 is not identically equal to f |x=1. Call the variables that a
function depends upon its support set.

We use superscripts to denote a function’s ON and OFF sets: for a function
f (x0, x1,. . . , xn), we write f (x0, x1,. . . , xn)1 to denote its ON set (i.e., the set of assign-
ments to variables x0, x1,. . . , xn where f evaluates to 1); we write f (x0, x1,. . . , xn)0 to
denote its OFF set (i.e., the set of assignments to variables x0, x1,. . . , xn where f eval-
uates to 0).

An appearance of a variable in a Boolean formula, either negated or nonnegated,
is refereed to as a literal. A clause is an OR of literals. A Boolean formula is in
Conjunctive Normal Form (CNF) if it is an AND of clauses. A CNF formula is said to
be satisfiable if there is some assignment of its variables that causes the formula to
evaluate to true. A CNF formula is said to be unsatisfiable if there is no assignment
of its variables that causes the formula to evaluate to true. We sometimes refer to a
CNF formula as a SAT instance. We will also refer to a circuit with a single primary
output as a SAT instance; the satisfiability of the primary output can be represented
as a CNF formula.

3. CIRCUIT AND NETWORK MODEL

Analysis of an acyclic circuit is transparent. We first evaluate the gates connected only
to primary inputs, and then gates connected to these and primary inputs, and so on,
until we have evaluated all gates. The previous values of the internal signals do not
enter into play.

We adopt a ternary framework for analysis. We assume that, at the outset, all wires
in a circuit have undefined values, which we denote with the symbol ⊥. Here ⊥ cap-
tures both uncertainty as well as possible ambiguity: the signal might be 0 or 1 – but
we do not know which; or it might not even have logical value, that is, it could be a
voltage value between logical 0 and logical 1. We say that a variable’s value is definite
or known if its value is 0 or 1 and that it is indefinite or ambiguous if it is ⊥. The idea
of three-valued logic for circuit analysis is well-established. It was originally proposed
for the analysis of hazards in combinational logic [Yoeli and Rinon 1964]. Bryant pop-
ularized its use for verification [Bryant 1987], and it has been widely adopted for the
analysis of asynchronous circuits [Brzozowski and Seger 1995].
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Fig. 6. An AND gate with 0, 1, and ⊥ inputs.

Fig. 7. An illustration unknown/undefined values ⊥.

Conceptually, when validating a cyclic circuit, we apply definite values to the inputs,
and track the propagation of signal values. Initially, each gate has an output value of
⊥. We ask: is there sufficient information to conclude that the gate output is 0 or 1? If
yes, we assign this value as the output; otherwise, the value ⊥ persists. For instance,
with an AND gate, if the inputs include a 0, then the output is 0, regardless of other
⊥ inputs. If the inputs consist of 1 and ⊥ values, then the output is ⊥. Only if all
the inputs are 1 is the output 1. This is illustrated in Figure 6. Input values that
determine the gate output are called controlling.

Consider the circuit fragment in Figure 7. One might be tempted to reason as fol-
lows: the output of the AND gate g1 is fed in complemented and uncomplemented form
into the OR gate g2. Thus, one of the inputs to the OR gate must be 1, and so its output
must be 1. And yet, by definition, ⊥ designates an unknown, possibly undefined value.
(For instance, in an actual circuit, it could indicate a voltage value exactly half way
between logical 0 and logical 1.) In our analysis, we remain agnostic: the output of the
OR gate is ⊥1.

In the analysis, we track the propagation of well-defined signal values. Once a defi-
nite value is assigned to an internal wire, this value persists for the duration (so long
as the input values are held constant). For any input assignment, a circuit reaches
a so-called fixed point in the ternary framework: a state where no further updates of
controlling values are possible. This fixed point is unique [Brzozowski and Seger 1995].
We adopt the following definition.

A circuit is combinational iff, for every assignment of input values, with all
the wires initially set to ⊥, the circuit reaches a fixed point that does not
contain any ⊥ values.

We illustrate our circuit model with the following example.

Example 3.1. Consider the circuit shown in Figure 8, consisting of an AND gate
g1, an OR gate g2, and an AND gate g3, in a cycle. By inspection, note that if x1 = 0
then f1 assumes value 0; if x2 = 1 then f2 assumes value 1; and if x3 = 0 then f3
assumes value 0. But what happens if x1 = 1, x2 = 0 and x3 = 1? In this case, all the
outputs equal ⊥, as illustrated in Figure 9. The outcome for all eight cases is shown in
Figure 10. We conclude that the circuit is not combinational.

1In standard CMOS technologies, it is possible for a gate to output a voltage value between the noise margin
if its inputs are also somewhere between logical 0 and logical 1. Remaining agnostic about the value of g2 in
Figure 7 allows us to invalidate circuits where this could be a concern.

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 4, Article 44, Publication date: October 2012.



The Synthesis of Cyclic Dependencies with Boolean Satisfiability 44:7

Fig. 8. A cyclic circuit that is not combinational.

Fig. 9. The circuit of Figure 8 with x1 = 1, x2 = 0 and x3 = 1.

Fig. 10. Analysis of the circuit in Figure 8.

3.1. Gate-Level vs. Functional-Level Analysis

The algorithms and concepts presented in this article are applicable to technology-
independent synthesis. At this level, a circuit is specified as a network that computes
Boolean functions. Ultimately, such a network gets mapped to gates in a specific tech-
nology. The validity of a cyclic combinational circuit is properly established in terms
of controlling values at the technology level. At the network level, we validate circuits
in terms of functional dependencies. The notion of a function depending on a variable
is similar but not identical to the concept of a Boolean value controlling the output of
a gate. There can be subtle issues when mapping valid network-level cyclic specifica-
tions to gate-level specifications. This was first demonstrated in Jiang et al. [2004].

Figure 11 demonstrates an example of a function that may behave differently de-
pending on its gate-level mapping. Before the function f (a, b , c) = ab + cb̄ is mapped
to gates, f (1, b , 1) = b + b̄ = 1. However, the axiom b + b̄ ≡ 1 only holds if it is as-
sumed that the values on the wires are truly Boolean (as demonstrated in Figure 7).
In the case where b =⊥, it is possible that b is some value between 1 and 0, and in this
case the mapped circuit shown in Figure 11 will evaluate to a different value than the
unmapped function f (a, b , c).
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Fig. 11. The function ab + cb̄ and a gate-level implementation.

An assignment of a subset of a function’s support variables is said to be a controlling
assignment if the function evaluates to the same value regardless of the assignment
of the other variables in the function’s support set. We sometimes say that a variable
assignment controls a function, if that variable assignment is a controlling assignment
for that function.

In this work, analysis is performed on the level of Boolean functions. We assume
that a function evaluates to definite values for all controlling assignments to that func-
tion’s support variables. In Backes et al. [2011], we explore methods of mapping and
analyzing cyclic circuits at the level of gates. In that paper, we prove that any set of
cyclic functions that is deemed combinational can be mapped to a gate-level design.
We provide a constructive method for performing the mapping.

4. FUNCTIONAL DEPENDENCIES

At the network level, a circuit is specified as a collection of nodes N . Associated with
each node is a node function fi and a corresponding internal variable yi, 0 ≤ i ≤ n − 1.
(We sometimes abuse the notation by using the same name for the function and the
corresponding internal variable, calling them both fi). The node functions can depend
on input variables as well as on other internal variables. In a network’s dependency
graph, a directed edge is drawn from node i to node j iff the node i is in the support set
of node function f j.

The process of multilevel logic synthesis typically consists of an iterative application
of minimization, decomposition, and restructuring operations [Brayton et al. 1990].
An important step at the technology-independent stage is the task of structuring func-
tional dependencies. (With SOP representations, this step was called substitution or
resubstitution.) In this step, node functions are expressed or reexpressed in terms of
other node functions as well as the primary inputs.

For each node function, different choices might be available as dependencies yield-
ing alternative expressions of varying cost. Throughout this article, we will focus on
support set size as our cost metric. Given the focus on technology-independent syn-
thesis algorithms, based on Boolean satisfiability, this metric is appropriate. (If we
were using an SOP representation, we could use literal counts instead.) Consider the
functions f1 and f2,

f1 = bcx + bdx + ab (1)
f2 = abcx̄ + cx + d. (2)

Figure 12 shows four different expressions for the functions and the corresponding
dependency graphs. Figure 12(a) shows expressions for f1 and f2, both in terms of the
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Fig. 12. Four different implementations of two functions, f1 and f2, of five variables a, b , c, d, and x.

primary input variables only. With a support set of {a, b , c, d, x}, the cost of both of
these expressions is 5, so the total cost is 10.

Figures 12(b) and 12(c) show alternate expressions, obtained by introducing func-
tional dependencies. In Figure 12(b), f1 is expressed in terms of f2 and {a, b , x}. Ac-
cordingly, the total cost is 9. In Figure 12(c), f2 is expressed in terms of f1 and {c, d, x}.
Accordingly, the total cost is also 9.

In existing methodologies, a total ordering is enforced among the functions in this
phase in order to ensure that no cycles occur. In this example, the ordering of f2 � f1
would produce the expressions in Figure 12(b); the ordering of f1 � f2 would produce
the expressions in Figure 12(c). Insisting upon an ordering means that we would have
to choose one of these two results.
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Fig. 13. Functions f1(a, b , x, f2) and f2(c, d, x, f1) with x = 0 and x = 1. For both values of x, the dependency
graphs become acyclic.

However, if we allow cyclic dependencies, we can find a better solution. Figure 12(d)
show expressions for f1 and f2 with support sets of {a, b , x, f2} and {c, d, x, f1}, so a
total cost 8. As the dependency graph in Figure 12(d) illustrates, the functional de-
pendencies are cyclic. Yet for every assignment of the primary input variables a, b , c,
d, and x, the functions evaluate to definite Boolean values. The functions and depen-
dency graphs for functions f1 and f2 when x is 0 and x is 1 are shown in Figure 13. We
see that, for any assignment of x, the cyclic dependency between f1 and f2 is broken,
so the result is combinational.

Of course, not all choices of cyclic dependencies are valid. Many will result in net-
works that are not combinational. Suppose we wish to compute some complicated
function f and its complement f̄ . Saying that

f = f̄ ,
f̄ = f,

is evidently meaningless.
In an earlier era, functional dependencies were generated through SOP minimiza-

tion with don’t-cares [Brayton et al. 1990]. The main contribution of this article is
an efficient strategy for synthesizing valid cyclic dependencies, based on the modern
concepts of Craig interpolation and Boolean satisfiability.

4.1. Functional Dependencies with Craig Interpolation

In a seminal paper, McMillan proposed a SAT-based method for symbolic model check-
ing based on computing so-called Craig interpolants [McMillan 2003]. In Lee et al.
[2007], the method was applied to the problem of synthesizing functional dependen-
cies. Broadly, the strategy is to formulate an instance of Boolean satisfiability (SAT)
that asks whether or not a target function can be implemented with a certain support
set. A proof of unsatisfiability, returned by a SAT solver, is converted into a circuit
that computes the target function. We give a brief review of the method here, noting
that in its current form, it is only applicable to acyclic orderings. In the next section,
we generalize the method to cyclic orderings.
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Fig. 14. A miter that checks to see if f0 can be specified in terms of f1, f2, and f3.

The method constructs a miter, as shown Figure 14. Here f0 is the target function.
The satisfiability of the primary output of this circuit indicates whether or not there
exists a dependency function h( f1, f2, f3) that can be used to represent f0 for some net-
work. Here f0 Left and f0 Right are two copies of the same network. The primary
inputs x0, x1, . . . , xn (referred to as X ) are the primary inputs to f0 Left. The pri-
mary inputs x0*, x1*, . . . , xn* (referred to as X *) are the primary inputs to f0 Right;
these are distinct sets of variables, but in direct correspondence with one another:
fi(X ) is equivalent to fi*(X *) where the assignment of X is equal to the assignment
of X *.

If the primary output of this circuit is satisfiable, then there exists a pair of input as-
signments X and X * such that f0(X ) �= f0*(X *) and f1(X ) = f1*(X *), f2(X ) = f2*(X *),
f3(X ) = f3*(X *). Thus the value of f0 cannot be determined solely from the values of
f1, f2, and f3.

Then this indicates that f0 evaluates to a different value from f0* while functions
f1, f2, and f3 evaluate to the same values of f1*, f2*, f3*, respectively, on each side
of the circuit for some assignment of X and X *. Clearly this indicates that the ON
set f0( f1, f2, f3)1 is not disjoint from the OFF set f0( f1, f2, f3)0. Accordingly, there is no
function h( f1, f2, f3) that is equivalent to f0(X ) (or to f0*(X *)).

If the primary output of the circuit is unsatisfiable for all assignments of X and X *,
this indicates that either f0 (or f0*) is a constant 1 or 0, or that the ON set f0( f1, f2, f3)1

is disjoint from the OFF set f0( f1, f2, f3)0. This indicates that there is some function
h( f1, f2, f3) that is functionally equivalent to f0(X ).

In Lee et al. [2007], a method is proposed for finding the dependency function h
using Craig interpolation. The underlying details of the approach to computing h are
not important; it is only important that the reader understands that if the ON set of a
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Fig. 15. The truth tables for two functions. The cyclic dependency graph containing these two functions is
not combinational.

function f ( f0, f1,. . . , fn)1 is disjoint from the OFF set f ( f0, f1,. . . , fn)0 then a function h
can be computed by generating an interpolant from a SAT instance that is similar to
that in Figure 14.

Using Craig interpolation to generate functional dependencies has proven much
more scalable than the previous SOP- and BDD-based methods. However, the struc-
ture of the dependencies that are generated are often overly large and redundant. For
this reason, Craig interpolation is generally used for architectures based on lookup
tables (e.g., FPGAs) where no matter how complex a function is, it can be implemented
by a lookup table as long as its support set size is less than or equal to the size of the
lookup table.

4.2. Generating Cyclic Functional Dependencies

A cyclic circuit is not combinational if, for some assignment of the circuit’s primary
inputs, the value of some function in the circuit remains ambiguous. In a sense, deter-
mining whether or not a cyclic circuit is combinational is a similar problem to that of
determining whether or not a target function can be implemented in terms of a specific
support set. In both problems, a negative answer can be proven by comparing pairs of
rows of a function’s truth table. This is illustrated in the following example.

Figure 15 shows the truth tables for two functions f0 and f1. In this implementa-
tion, f0 has support variables a, b , and f1, while f1 has support variables a, c, and f0.
Consider the third and fourth rows of the truth table for function f0 and the first and
second rows of the truth table for function f1. For each pair of rows, the primary input
variables are assigned the same values (a = c = 0, b = 1). However, the output values
of f0 and f1 both toggle between 1 and 0. So, for this assignment, the value of f0 de-
pends on the value of f1 and the value of f1 depends on the value of f0. A fixed point
is reached; because of the mutual dependence, the values of f0 and f1 are both ⊥ in
the fixed point. Figure 16 shows the functions f0 and f1 and the resulting dependency
graph under this assignment.

Informally, a cyclic dependency graph is not combinational if there exists a selection
of pairs of rows from the truth tables for the functions that satisfies three conditions.

(1) The primary input variables are the same value in every row.
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Fig. 16. The dependency graph for the functions in Figure 15 for the assignment: a = c = 0, b = 1. The
dependency graph is not combinational.

Fig. 17. The truth tables for two functions. The cyclic dependency graph containing these two functions
is not combinational. This figure also illustrates a specific selection of rows that proves that the cyclic
dependency graph is not combinational.

(2) If the value of some function is the same for some pair of rows, then the variable
corresponding to this function in every other pair of rows assumes this value (i.e.,
if the value of some function is controlled, then this value propagates to the input
of other functions that contain this function as a support variable).

(3) The values of some function toggles between 1 and 0 for some pair.

Finding a selection of pairs of rows that holds these properties is necessary and suffi-
cient to show that there is a primary input assignment that causes the circuit to reach
a fixed point with a ⊥ value. This is stated more formally with Proposition 4.1. In
Proposition 4.1, we consider a function’s truth table to be a set of rows. Each row is an
assignment of the function’s support variables (which can contain primary input vari-
ables, or other internal variables). Each function has a value associated with a row.
For example, consider the truth table for function f0 in Figure 15. Let r0 be the first
row of this truth table. The variable assignment associated with r0 is a = b = f1 = 0.
The value of f0(r0) is 1. It may help the reader to refer to Figure 17 and to the example
listed after the proof to help make sense of the constructs in Proposition 4.1.

PROPOSITION 4.1. Let G be a cyclic dependency graph and let T = {t0, t1, . . . , tn−1}
be the set of truth tables for the functions F = { f0, f1, . . . , fn−1} in G. Let R1 = {r0 ∈
t0, r1 ∈ t1, . . . , rn−1 ∈ tn−1} and R2 = {r0 ∈ t0, r1 ∈ t1, . . . , rn−1 ∈ tn−1} be sets of rows from
the truth tables in T. G is not combinational if and only if, for some choice of R1 and
R2 (some selection of rows) the following conditions hold.
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(1) Every row in R1 and R2 has the same values for its primary input variables.
(2) Let R1

i and R2
i be the ith row in R1 and R2 respectively. ∀i ∈ {0, 1, . . . , n − 1}. If the

value of fi(R1
i ) is the same as fi(R2

i ) then fi is this value in every other row in R1

and R2. This only for rows that contain fi as a support variable.
(3) ∃i ∈ {0, 1, . . . , n − 1} such that the value of fi(R1

i ) differs from fi(R2
i ).

PROOF. The first two conditions force the choice of R1 and R2 to correspond to a
fixed point in G reached by some primary input assignment.

The first condition asserts that the assignment of the primary input variables must
be the same in every row of every element of R1 and R2. If the primary input as-
signment is a controlling assignment for some function fi, then that function’s output
value will not differ between the two rows R1

i and R2
i .

The second condition asserts that if the output value of some function fi is the same
between two rows R1

i and R2
i , then the variable corresponding to this function in other

rows of R1 and R2 must also be assigned this value. Essentially this condition guar-
antees that if the value of some function is controlled to either 0 or 1, then this value
is propagated to every other function that contains the function as a support variable.
If this value causes another function to be controlled, then the value of that function
propagates to other functions containing that function as a support variable. As was
discussed in Section 3, eventually this propagation halts, and the circuit reaches a
unique fixed point.

However, the value of some function might not be controlled by the value of its
support variables. If the output value of some function fi differs between two rows
R1

i and R2
i , this indicates that the output value of the function is ambiguous. In other

words, if a function’s output value differs between two rows, this corresponds to that
function evaluating to ⊥.

The third condition asserts that one of the functions evaluates to ⊥ in the fixed
point. Our definition of combinationality states that if a ⊥ value persists in a fixed
point reached by some primary input assignment, then the dependency graph is not
combinational. For a network that is not combinational, a choice of R1 and R2 that
corresponds to this fixed point will satisfy all three of these conditions.

Similarly, a combinational dependency graph never contains a ⊥ value in its
fixed point for any assignment of its primary input variables. Therefore these three
conditions can never be satisfied for any choice of R1 and R2 for a network that is
combinational.

Because the example in Figure 15 is not combinational, there must be some choice
of pairs of rows (R1 and R2) that satisfies the three conditions in Proposition 4.1. As
stated before, the conditions can be satisfied by selecting the third and fourth rows of
the truth table for f0 and the first and second rows of the truth table for f1: R1 = {{a =
0, b = 1, f1 = 0}, {a = 0, c = 0, f0 = 0}} and R2 = {{a = 0, b = 1, f1 = 1}, {a = 0, c = 0, f0 =
1}}. The first condition is satisfied because a = c = 0, b = 1 for every element of R1 and
R2. The second condition is satisfied because f0(R1

0) �= f0(R2
0) and f1(R1

1) �= f1(R2
1) (i.e.,

f0(0, 1, 0) �= f0(0, 1, 1) and f1(0, 0, 0) �= f1(0, 0, 1)). Finally, both functions f0 and f1
are toggling for this primary input assignment ( f0(R1

0) �= f0(R2
0) and f1(R1

1) �= f1(R2
1)),

satisfying the third condition. Figure 17 illustrates this specific selection of rows for
the example in Figure 15.

Craig interpolation provides an implementation for each target function in a de-
pendency graph [Lee et al. 2007]. Given this implementation, a SAT instance can be
formulated that is satisfiable if and only if the three conditions above are met. A cir-
cuit whose satisfiability indicates that these three aforesaid conditions are met for the
functions in Figure 15 is shown in Figure 18.
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Fig. 18. A SAT instance that verifies whether or not the functions described in Figure 15 are
combinational.

The SAT instance contains two copies of functions f0(a, b , f1) and f1(a, b , f0).
In each copy of these two circuits, the primary input variables are kept the same
(satisfying Condition 1 of Proposition 4.1). Additional logic is added that computes
the OR of the Exclusive OR of each copy of each function (satisfying Condition 3 of
Proposition 4.1). Finally, the additional clauses shown in the box on the upper left-
hand side of the figure can be added to the SAT instance to assert that Condition 2
holds. If the SAT instance is satisfiable, then all three conditions are satisfied and
the cyclic dependency between functions f0(a, b , f1) and f1(a, c, f0) is proven to be
noncombinational.

4.3. General Method

We sketch the steps to generate the SAT instance that verifies any set of functions
F = { f0, f1, . . ., fn−1} of variables X = {x0, x1, . . ., xm−1} behaves combinationally.

(1) Generate an implementation for each target function in terms of its support vari-
ables via Craig interpolation (The same way as discussed in Section 4.1). Create
two copies of each of these implementations. Refer to one copy as the left copy
and the other copy as the right copy. We define CNFL

i (X , F) and CNFR
i (X , F)

to be the set of clauses representing the logic for the left and right copies, respec-
tively, of function fi. Here X is the set of primary input variables in the support
set of function fi and F is the set of internal variables in the support set of func-
tion fi.

(2) Share the same primary input variables X between every copy. Share the same
internal variables between every left copy and share the same internal variables
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Fig. 19. A SAT instance that checks if the set of functions F = { f0, f1, . . ., fn−1} of variables X = {x0, x1,
. . ., xm−1 is combinational.

between every right copy. Let FL = { f L
0 , f L

1 , . . ., f L
n−1} be the set of left internal

variables and let FR = { f R
0 , f R

1 , . . ., f R
n−1} be the set of right internal variables.

c1 =
∏n−1

i=0 (CNFL
i (X , FL) ↔ fi)(CNFR

i (X , FR) ↔ f ∗
i ) (5)

(3) Assert the OR of the Exclusive OR of each left and right copy of each function.

c3 =
∑n−1

i=0 ( fi ⊕ f ∗
i ) (6)

(4) For each function, assert that the corresponding left internal variable is TRUE if
the left and right copies of the function are both TRUE. For each function, assert
that the corresponding left internal variable is FALSE if the left and right copies
of the function are both FALSE. The analogous assertions must also be made for
each right internal variable.

c2 =
∏n−1

i=0 ( f̄i + f̄ ∗
i + f L

i )( f̄i + f̄ ∗
i + f R

i )( fi + f ∗
i + f̄ L

i )( fi + f ∗
i + f̄ R

i ) (7)

Figure 19 shows a graphical representation of the general SAT instance for n func-
tions of m variables2. Similarly to Figure 18, the conditions stated in Proposition 4.1
are shown in this figure as well.

PROPOSITION 4.2. Some choice of R1 and R2, for some set of functions satisfies the
three conditions in Proposition 4.1 if and only if (c1)(c2)(c3) is satisfiable.

PROOF. Step 1 of the general method creates two copies of every function. The value
of the support variables in each copy corresponds to the value of the variables in each
element of R1 and R2. The conditions in c1 assert that the primary input variables

2This figure is drawn assuming n > 2.
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must be assigned the same value in every copy of every function. This corresponds
to Condition 1 in Proposition 4.1. The conditions in c3 assert that some function’s
output value differs between its left and right copies. This corresponds to Condition 3
in Proposition 4.1.

Finally, c2 asserts that if the value of some function is the same between its left and
right copies, then the support variables corresponding to this function in every other
copy are also assigned this value. This corresponds to Condition 2 of Proposition 4.1.
If the SAT instance (c1)(c2)(c3) is satisfiable, then all the conditions of Proposition 4.1
can be met for some choice of R1 and R2. If (c1)(c2)(c3) is unsatisfiable, then the three
conditions from Proposition 4.1 can never be simultaneously satisfied, and the network
is deemed combinational.

5. SYNTHESIZING CYCLIC DEPENDENCIES

Given a choice of functional dependencies, that is to say, a choice for the support set
of each target function, the algorithm in the previous section provides a constructive
method for synthesis: if the answer to the SAT-based query is “unsatisfiable” then,
through Craig interpolation, the algorithm provides the logic that implements the tar-
get functions with the specified support set.

In this section, we describe a synthesis methodology for finding the best choice of
functional dependencies. Our cost metric is the size of the support set of each function.
In the corresponding dependency graphs, this corresponds to the fewest possible edges.
To accomplish this task, we use a branch-and-bound algorithm that searches through
the space of possible dependency graphs.

This algorithm is described with pseudocode in Figure 20. The routine “Synthesis”
receives a set of Boolean functions as arguments. It first constructs a list of possible
support sets for each function. Initially, it chooses a dependency graph containing the
smallest possible support set for each function. This solution, as well as the list of
possible support sets for each function, is sent to the “BreakDown” routine.

The “BreakDown” routine checks to see if the dependency graph that it is given is
combinational. If the graph is not combinational, it iterates over all the functions that
are found to be noncombinational.3 For each of these functions, the current support
set is replaced by the next smallest support set available in the list. If the dependency
graph containing this next smallest solution is smaller than the best current solution,
then a copy of this new dependency graph is sent recursively to the “BreakDown”
routine as a potential new best solution. The “BreakDown” routine returns when it
reaches a combinational solution. The smallest dependency graph is returned to the
“Synthesis” routine and the algorithm terminates.

Given a list of possible support sets, the search begins with the smallest support
set for each function. This is the most compact representation possible. In practice,
the initial solution is usually a very dense ball of dependencies. This initial solution is
almost always not combinational. Generally, as the support sets increase in size, there
are fewer cycles. The algorithm always terminates, because it must eventually hit a
solution containing only the primary inputs in the supports sets for each function. Of
course, in practice it likely finds much better solutions than this and terminates before
this point.

3This can be accomplished by repeatedly solving a slightly modified version of the SAT instance described
in the previous section. The SAT instance is modified so that the only the function that it considers is the
one included in the OR gate described in step 3 of the general method. This way, if the SAT instance is
satisfiable, it indicates that there is a primary input assignment where the function we are considering
evaluates to ⊥.
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Fig. 20. Pseudocode for our synthesis algorithm. Magnitude symbols (|magnitude|) are used to indicate the
size of a list. The subscript i, when applied to a list, indicates an access to the i-th element of the list. The
dependency graph variables (e.g., DepGraph, DepGraphCopy, and SmallestDepGraph) are lists of support
sets for each function. The routine “SmallestSupportSet” returns the smallest support set for a particu-
lar function from a list of support sets. The routine “NextSmallestSupportSet” returns the next smallest
support set from a list of support sets for a particular function. The routine “SupportSetSize” returns the
sum of the size of all the support sets for a given dependency graph. The routine “DepGraphIsCombina-
tional” performs the SAT-based analysis described in the previous section; it returns True if the dependency
graph is combinational. The routine “FunctionIsNotCombinational” returns True if there is a primary input
assignment that causes the given function to evaluate to ⊥.

A visual illustration of the synthesis algorithm is shown in Figure 21. In this ex-
ample there are three functions, f0, f1, and f2, of four primary input variables a, b ,
c, and d. In the initial dependency graph, there are primary input assignments that
cause all three functions to evaluate ⊥. The algorithm proceeds to search for solutions
by trying different support sets for all three functions. In this example, three combi-
national solutions are found. The smallest combinational solution has two cycles and
a total support set size of 8.

5.1. Finding Support Sets

Our synthesis algorithm requires that a list of possible support sets be provided. To the
best of our knowledge, there has been no research that directly deals with the problem
of quickly finding possible support sets for target functions. Work on cut enumeration
for FPGA mapping is somewhat related, but is heavily biased by the initial structure
of a netlist [Mishchenko et al. 2007b; Takata and Matsunaga 2009]. For this work, we
used a relatively simple algorithm for parsing the search space of possible support sets
for a target function. The algorithm is described by the psuedocode in Figure 22. The
algorithm starts with a large list of possible support variables. It recursively removes
variables for this list, finding smaller support sets that can be used to represent the
target function. These smaller support sets have the property that if any variable was
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Fig. 21. An illustration of the synthesis algorithm on an example consisting of 3 functions and 4 primary
input variables. The thin gray arrows indicate cyclic dependencies in the dependency graphs. Some branches
are omitted for clarity, as indicated by “. . .”.

removed, the resulting support set could not be used to represent the target function.
In the experiments run in Table I of Section 6 we limited the number of possible sup-
port sets for each target function to 100. We use incremental SAT solving to improve
the speed of subsequent calls to the SAT solver.

6. IMPLEMENTATION AND RESULTS

We present two sets of synthesis results on standard benchmarks [Benchmarks 2005].
In Table I we report results for cyclic circuits that were first synthesized with our tool
CYCLIFY and then optimized using the Berkeley tool ABC [Mishchenko et al. 2007a].
CYCLIFY is based on an earlier tool, Berkeley SIS [Sentovich et al. 1992], and so
uses SOPs and BDDs as the underlying data structures. Accordingly, the size of the
benchmarks that it can tackle is limited. CYCLIFY uses a similar branch-and-bound
algorithm to the one described in Section 5. (Instead of support set size, it uses literal
counts as its cost function.) For Table I, we selected benchmarks where CYCLIFY pro-
duced cyclic solutions. Before reading these circuits into ABC, dummy primary inputs
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Fig. 22. The two functions “SupportSets” and “SupportSetsHelper” are used to generate a list of valid
support sets for a target function. The function “PossibleSupportVars” returns a list of variables that could
possibly be used as a support variable for the target function. The “SupportSets” function initializes the list
of support sets and the list of possible support set variables before calling the “SupportSetsHelper” function.
The “SupportSetsHelper” function checks to see if the set of current variables is a superset of some already
found support set. If it is not, the SAT based check discussed in Section 4.1 is performed to determine if
the current set of variables can be used to represent the target function. If they can, then the function is
called recursively with each variable removed once from the set of current support variables. If none of these
support sets can be used to represent the target function, then this indicates that no subset of the current
support set variables can be used to represent the target function. In this case, the current set of support
variables is added to the list of support sets.

were introduced at the feedback locations (implicitly removing the cycles). The cir-
cuits were then run through 10 iterations of compress2, a very aggressive optimization
script. The original acyclic versions of the circuit were also run through 10 iterations
of compress2.

The “Gates” columns report the number of AND2 gates in ABC’s AND-Inverter
Graph (AIG) representation. AIGs are the standard representation at the technology-
independent level for most modern synthesis algorithms, including those based on
SAT. The “Size Ratio” column is calculated as “Gates Cyclic / Gates Acyclic.” The “Syn-
thesis Time” is the time it took CYCLIFY to produce the circuits. We note that these
numbers reflect the size of the circuits before they are mapped to some technology,
These numbers are subject to some change after mapping. This holds for the numbers
reported in Table II as well.

The “Delay” columns report the delay for the cyclic and acyclic circuits. We assume
that nodes in the AIG (corresponding to AND gates) have unit delay; edges in the
AIG, including those with inversions, have zero delay. The “Delay Ratio” column is
calculated as “Delay Cyclic / Delay Acyclic.” For the cyclic circuits, we use the algorithm
presented in Riedel [2004], based on symbolic event propagation, to compute the delay.
For the acyclic circuits, we compute the delay as the longest path from the primary
outputs to the primary inputs in the AIG. As Table I demonstrates, introducing cyclic
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Table I. Results of Circuits Synthesized with CYCLIFY and then Optimized with ABC

CYCLIFY Results

Benchmark Gates Cyclic Gates Acyclic Delay Cyclic Delay Acyclic Size Ratio Delay Ratio Synthesis Time (s)
bbsse 90 96 5 8 0.94 0.63 8
bw 110 183 9 9 0.6 1 941
clip 113 181 5 9 0.62 0.56 1
cse 128 152 6 9 0.84 0.67 5
duke2 309 301 11 11 1.03 1 178
ex1 205 210 14 8 0.98 1.75 551
ex6 61 116 8 7 0.53 1.14 6
inc 87 115 6 8 0.76 0.75 4
planet 381 419 7 9 0.91 0.78 10667
planet1 377 433 7 9 0.87 0.78 18559
pma 167 161 5 8 1.03 0.63 270
s1 254 339 6 11 0.75 0.55 214
s298 1806 1823 7 14 0.99 0.50 41679
s386 91 102 5 7 0.89 0.71 8
s510 189 199 5 9 0.95 0.56 5
s526 129 135 9 9 0.96 1 25
s526n 130 117 8 10 1.11 0.80 29
s1488 431 500 9 9 0.86 1 2793
sse 87 102 5 8 0.85 0.63 10
styr 344 380 8 10 0.91 0.80 204
table5 686 639 8 13 1.07 0.62 51010

Table II. Benchmark Circuits with Cyclic Dependencies

Synthesis Results

B enchmark Num PIs Num POs Orig AIG Size Num Cycles Acyclic SS Size Cyclic SS Size Synthesis Time (s)

amd 14 25 1625 7 69 69 2
apex3 54 50 1655 1 29 27 19
duke2 22 29 577 4 57 55 10
ex6 8 25 88 1 32 32 < 1
gary 15 11 821 1 33 32 1

dependencies yields significant reductions in area as well as delay.4 The runtime of
CYCLIFY is greatly influenced by the size of the circuit (as benchmarks table5 and
s298 demonstrate).

Table II presents synthesis results from SAT-based trials, using support set size as
the cost metric. The algorithm described in Figure 20 was implemented in Berkeley
ABC [Mishchenko et al. 2007a]. The SAT solver used was MiniSAT [Sörensson and
Een 2012]. All the trials were run on a 32-bit Linux machine with 3.2 GHz AMD
Phenom(tm) II X6 1090T processor. Only one core was utilized for running the
algorithm.

Table II lists benchmarks that were run through the synthesis routine described
in Section 5. The algorithm generated support sets for each of the benchmarks with
primary output functions expressed in terms of other primary output functions and
primary inputs. (For benchmarks that had less than 40 primary outputs, additional
primary outputs were added to intermediate nodes until the benchmark contained

4Although counterintuitive, cycles can be used to optimize circuits for delay as well as for area. The extra
flexibility of allowing cycles when structuring functional dependencies makes it possible to move logic off of
true critical paths, reducing the delay [Riedel 2004].
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exactly 40. This was done to increase the number of possible dependency graphs.) We
ran the BreakDown procedure described in Section 5 until either 40 combinational
solutions were found, or until a total of 200 dependency graphs were explored and
none of these were deemed combinational. Table II reports results for the smallest
cyclic and acyclic representations that were found.

The columns “Num PIs” and “Num POs” list the number of primary inputs and
primary outputs, respectively. The column “Orig AIG Size” lists the number of nodes
in the AIG representation. The column “Cyclic SS Size” lists the sum of the number
of support variables in functions that are part of strongly connected components in
cyclic solutions. The column “Acyclic SS Size” lists the sum of the number of support
variables in these same functions in the acyclic solutions. The column “Num Cycles”
lists the number of cycles in the corresponding dependency graph. The column “Syn-
thesis Time” lists the time spent searching through the space of dependency graphs
and checking if solutions were combinational. In all trials, the size of all support sets
was limited to 100. For most of the benchmarks, the smallest combinational solution
was found relatively quickly when searching through the space of possible dependency
graphs. As anyone familiar with SAT-based methods might have expected, SAT-based
synthesis is very efficient.

The new SAT-based synthesis methodology scales much better with circuit size than
that of CYCLIFY. However, the cost metric for the comparison is different (support set
size versus AIG size). Modern FPGA mapping algorithms have a similar aim as the
synthesis methodology presented in this article; they attempt to reorganize groups of
functions into blocks with a fixed support set size. Currently, the state-of-the-art tools
do not allow cyclic dependencies. The results presented in this work demonstrate that
cyclic dependencies with smaller support set size than their acyclic equivalents can
be found in benchmark circuits, and they can be found in a scalable manner. Modern
synthesis algorithms, such as those targeting FPGAs, can be adapted to consider cyclic
solutions using the method presented in this article, increasing the space of possible
solutions that these tools can produce.

7. DISCUSSION

Early work suggested the possible benefits of cyclic designs, and yet still, combina-
tional circuits are not designed with cycles in practice. As early as 1992, Leon Stok
predicted that EDA tools would not readily be coaxed into accepting cyclic circuits
[Stok 1992]. Many of the analysis and verification routines in modern EDA tools balk
when given cyclic designs. (Some check a design compulsively after every transforma-
tion to see if it contains cycles. If it does, the program screeches to a halt.) Significantly,
engines for static timing analysis demand acyclic circuit topologies.

The requisite algorithmic approach is to perform “false-path-aware” analysis. Early
formulations based on SOPs and BDDs were never up to the task, but modern SAT-
based algorithms are powerful enough to perform such analysis. In our view, the anal-
ysis engines of modern EDA tools should be made not only “false-path” aware but also
“false-cycle aware.” Introducing cycles provides significant opportunities for optimiza-
tion, both for area and for delay. (Since power is generally correlated with area, we
expect gains in this metric as well.)

In related work, we have described SAT-based algorithms for gate-level analysis
and mapping of cyclic circuits [Backes et al. 2008, 2011]. This article presented an
SAT-based method for synthesizing cyclic functional dependencies, at a technology-
independent level. It is an application of a very promising new idea for synthesizing
functional dependencies with Craig interpolation [Lee et al. 2007].

The topic of structuring functional dependencies, whether cyclic or acyclic, is one
that has not garnered sufficient attention in the logic synthesis community, in our
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opinion. Given the remarkable scalability of the approach, Craig interpolation pro-
vides the opportunity to explore large changes in the structure of functional depen-
dencies, early in the synthesis process. In applications to-date, interpolants have been
generated directly from the proofs of unsatisfiability that are provided by SAT solvers.
We have proposed efficient methods based on incremental SAT solving for modifying
resolution proofs in order to obtain more compact interpolants. This reduces the cost
of the logic that is generated for functional dependencies [Backes and Riedel 2010].

In future work, we will study techniques for manipulating and minimizing the res-
olution proofs obtained through incremental SAT calls, with the aim of effecting large
optimizations in circuit structure through changes in functional dependencies. In our
view, the resolution proofs from SAT solving could be used as an underlying data struc-
ture for performing technology-independent synthesis, as opposed to just the front-end
step.
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