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Abstract Building on the linear matrix inequality (LMI)

formulation developed recently by Zavlanos et al. (Au-

tomatica: Special Issue Syst Biol 47(6):1113–1122, 2011),

we present a theoretical framework and algorithms to

derive a class of ordinary differential equation (ODE)

models of gene regulatory networks using literature curated

data and microarray data. The solution proposed by Zavl-

anos et al. (Automatica: Special Issue Syst Biol

47(6):1113–1122, 2011) requires that the microarray data

be obtained as the outcome of a series of controlled

experiments in which the network is perturbed by over-

expressing one gene at a time. We note that this constraint

may be relaxed for some applications and, in addition,

demonstrate how the conservatism in these algorithms may

be reduced by using the Perron–Frobenius diagonal

dominance conditions as the stability constraints. Due to

the LMI formulation, it follows that the bounded real

lemma may easily be used to make use of additional

information. We present case studies that illustrate how

these algorithms can be used on datasets to derive ODE

models of the underlying regulatory networks.

Keywords Linear models � Gene regulatory networks �
Ordinary differential equations � Linear matrix

inequalities � Convex optimization � High throughput data

Introduction

The phenotypic expression of a genome, including the

response to external stimuli, is a complex process involving

multiple levels of regulation. This regulation includes

controls over the transcription of messenger RNA (mRNA)

and translation of mRNA into protein via gene regulatory

networks (GRNs). Advances in microarray and assay

technologies are facilitating increasingly large amounts of

laboratory data for analysis of these networks. If the net-

work is operating sufficiently close to a steady-state,

Gardner et al. (2003) have shown that multiple linear

regressions can be applied to this data to derive a linear

ordinary differential equation (ODE) model of the form

_x ¼ Axþ u, where x is the vector of gene expression values

and u is the exciting input (see Gardner et al. 2003; Tegner

et al. 2003). Now, in addition to this data, information on

the interactions between genes, proteins, and metabolites is

available through published literature. Observing that this

information can be included as a constraint in the optimi-

zation problem solved in Gardner et al. (2003), Zavlanos

et al. (2011) have performed convex relaxations on the

modified optimization problem and have given a linear

V. V. Kulkarni (&) � M. C. Riedel

Department of Electrical and Computer Engineering, University

of Minnesota, Minneapolis, MN 55455, USA

e-mail: vvk215@gmail.com

M. C. Riedel

e-mail: mriedel@umn.edu

R. Arastoo

Department of Mechanical Engineering, Lehigh University,

Bethlehem, PA 18015, USA

e-mail: reza.arastoo@gmail.com

A. Bhat � K. Subramanian

Strand Life Sciences, Bangalore 560024, India

e-mail: anupama@strandls.com

K. Subramanian

e-mail: kas@strandls.com

M. V. Kothare

Department of Chemical Engineering, Lehigh University,

Bethlehem, PA 18015, USA

e-mail: mvk2@lehigh.edu

123

Syst Synth Biol (2012) 6:69–77

DOI 10.1007/s11693-012-9100-4



matrix inequality (LMI) based solution to derive linear

ODE models of gene regulatory networks. In particular,

(Zavlanos et al. 2011) re-formulates the approach of

Gardner et al. (2003) using LMI’s and includes sufficient

conditions for asymptotic stability, given by the Lyapunov

stability theorem (see Desoer and Vidyasagar 1975; Vid-

yasagar 1993; Sastry 1999), as the additional constraints to

ensure that the linear ODE model is stable. In Zavlanos

et al. (2011) , the problem formulation and its solution is

presented in a highly lucid manner and its choice of LMI

formulation is likely to lead to a number of LMI-based

solutions for such network modeling problems.

The paper is organized as follows. After stating our

modeling assumptions, we present the network modeling

algorithms of Zavlanos et al. (2011) and our extensions of

those algorithms. We then show that our algorithms per-

form at least as well as those algorithms when presented

with a synthetic dataset that is generated using the proce-

dure given in Zavlanos et al. (2011). We then show how

these results can be used to derive a protein regulatory

network of malaria infected patients.

Linear ODE models of gene regulatory networks

The problem of how the gene expression data should be

used to obtain linear ODE models of the underlying gene

regulatory networks has been well researched (see for

example Bansal et al. 2006, 2007; Gardner et al. 2003;

Penfold and Wild 2011; Sontag et al. 2004; Tegner et al.

2003, and references therein). We shall focus on deter-

ministic models. The ODE model is of the form

_x ¼ Axþ Bu, where A and B are real-valued matrices of

suitable sizes, x is the vector of gene expression values, and

u is the vector (or matrix) of exciting inputs. Laboratory

data on the gene expression values for varying inputs fur-

nishes the datasets X and U, where the matrix X comprises

the vectors of gene expression values and the matrix

U comprises the vectors of corresponding excitations.

Now, the objective is to solve for A and B such that some

performance metric is optimized. Assuming the availability

of time-series data for the gene expression values, such

models are derived in Bansal et al. (2006 and 2007)

whereas this requirement is relaxed in Gardner et al.

(2003), Tegner et al. (2003), and Zavlanos et al. (2011).

All of these approaches rest on the assumption that the

network is operating sufficiently close to a stable equilib-

rium point. Under this assumption, solving the ODE _x ¼
Axþ Bu for A and B effectively reduces to solving the

equation 0 = Ax ? Bu for A and B. In addition, it is

assumed in Gardner et al. (2003), and therefore in Zavl-

anos et al. (2011), that the inputs u can be controlled to

selectively over-express precisely one gene at a time. This

reduces the matrix B to an identity matrix and, as a result,

only the matrix A needs to be solved for. However, in

practice, such controlled excitation is rarely performed, at

least as of today. Instead, most pharmaceutical companies

and cosmetic firms have large repositories of snapshots of

the gene expression values for the control cases, i.e., for

normal subjects, and for the treatment cases, i.e., for the

cases in which the subject is either abnormal or exposed to

an excitation or a treatment (such as a radiation or a drug

dose). Here, it rarely holds that the excitation input

u selectively over-expresses (or suppresses) precisely one

gene at a time. We shall show that the approach of Zavl-

anos et al. (2011) is applicable even when its overly

restrictive constraint B = I is relaxed.

Method

Assumptions

Our main assumptions are as follows.

– The network can be modeled as _x ¼ f ðx; uÞ for some

function f.

– The network has a stable equilibrium point, xeq, in the

neighborhood of which _x ¼ f ðx; uÞ can be approxi-

mated as _~x ¼ A~xþ Bu, where ~x¼: x� xeq, for some

matrices A and B.

– The operating point of the network is sufficiently close

to the stable equilibrium.

– The matrix A is invariant across all treatments and all

subjects.

– The matrix A is sparse (see Arnone and Davidson 1997;

Theiffry et al. 1998).

– The input u is to be computed as follows. The exogenous

excitation is a transcription perturbation in which

individual genes are over-expressed using an episomal

expression plasmid. After the perturbation, these cells

are allowed to grow under constant physiological

conditions to a steady-state and the difference in the

mRNA concentrations of these cells and that of normal

cells, i.e., those having reporter genes as opposed to the

over-expressed genes is to be noted down (see DiBer-

nardo et al. 2004). In general, a perturbation will affect

p B n genes in the n-gene network.

– Specific genes encode the transcription factors (TFs)—

proteins that can bind DNA (either independently or as

part of a complex), usually in the upstream regions of

target genes (promoter regions), and so regulate their

transcription. Since the targets of a TF can include

genes encoding for other TFs, as well as those encoding

for proteins of other function, interactions between

transcriptional and translational levels of the system
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take place. In addition, post-translational and epige-

netic effects also influence the network. We assume

these can be accounted for indirectly in the gene

regulatory network.

Background results

Let us now note the main results of Zavlanos et al. (2011).

To begin with, let us denote the i-th element of a vector

v as vi and the (i, j)-th element of a matrix A as either ai,j or

aij. Let m be the number of available transcription pertur-

bations. Let n denote the number of genes. Let U¼:

½u1 u2; . . .; um� 2 R
p�m and ~X¼: ½~x1 ~x2; . . .; ~xm� 2 R

n�m be

the matrices containing transcriptional perturbation values

and their associated mRNA expression values, respec-

tively, for the m experiments. Then, if the network modeled

as _x ¼ Axþ Bu is at the stable equilibrium, then it holds

that A ~X þ BU ¼ 0: In general, the measured deviation in

x can be different from the deviation predicted by the linear

ODE model. Therefore, let X¼: ~X þ DX, where X comprises

the measured values and DX is the mismatch due to non-

linearities, measurement noise, etc. Then, AX þ BU ¼
A ~X þ BU þ g, where g¼: ADX. The network modeling

problem can now be stated as follows: Given X and U,

determine a sparse stable matrix A that minimizes g sub-

ject to the constraint that it satisfies the constraints laid

down by a priori information.

The a priori information is often in the form of sign

pattern S that captures the interaction between the nodes

i and j. The convention is that sij is (i) ’?’ if the node

j activates the node i, (ii) ’-’ if the node j inhibits the node i,

(iii) zero if the nodes i and j do not interact, and (iv) ’?’ if

no a priori information is available on how the node

j affects the node i. Then,

A 2 S,

aij� 0 if sij ¼ þ;
aij� 0 if sij ¼ �;
aij ¼ 0 if sij ¼ 0;
aij 2 R if sij ¼ ?:

8
>><

>>:

ð1Þ

The stability constraint is satisfied if every eigenvalue of

A has a negative-valued real component. Since minimizing

cardð�Þ might have an adverse effect on g and vice versa, a

convex combination of cardð�Þ and g is minimized in Za-

vlanos et al. (2011)—specifically, the Problem 1 is first re-

cast as the following optimization problem P1:

minimize t cardðAÞ þ ð1� tÞ�
subject to kAX þ BUk1� �; �[ 0; A 2 S;

where t 2 ½0; 1� is a user defined parameter. Now, cardð�Þ is

a non-convex function. Hence, it is relaxed in Zavlanos

et al. (2011) to a convex function, namely, a weighted ‘1-

norm
P

i,j=1
n wij|aij|, where the weights wij are defined as

wij ¼
d

dþ j aij j
; i; j ¼ 1; � � � ; n; ð2Þ

where d[ 0. If d is chosen sufficiently small then the value

of wij |aij| & 1 if aij = 0 and is zero otherwise. The fol-

lowing algorithm, viz., [20, Algorithm 1], solves this

optimization problem.

To ensure that the system is stable, the eigenvalues of

A must be constrained to have negative valued real part so

that P1 is modified into the following optimization problem

P2:

minimize t
P

i;j

wijjaijj þ ð1� tÞ�

subject to kAX þ BUk1� �; �[ 0

realðkiðAÞÞ\0 8i; A 2 S;

:

where t 2 ½0; 1� is a user defined parameter. In Zavlanos

et al. (2011), a solution to P2 is obtained by using the

Gershgorin’s circle theorem as follows (see Algorithm 2 of

(Zavlanos et al. 2011)).

Theorem 1 (Gershgorin’s Circle Theorem (see [Horn and

Johnson 1991))] Let A 2 R
n�n. For all i 2 f1; � � � ; ng; define

the deleted absolute row sums of A as RiðAÞ¼
: P

j 6¼i jaijj.
Then, all eigenvalues of A lie within the union G(A) of n discs

that is defined as

GðAÞ¼:
[n

i¼1

fz 2 Cj jz� aiij �RiðAÞg:

Furthermore, if a union of k of these n discs forms a

connected region that is disjoint from every other disc then

that region contains precisely k eigenvalues of A. h

From Theorem 1, it follows that the matrix A is stable if

aii B -
P

i = j |aij| V i, which holds if A is diagonally

dominant with non-positive diagonal entries. To relax this

restrictive requirement, a similarity transformation V can

be applied to A since the eigenvalues of V-1AV are the

same as those of A. An easy choice for V is V ¼ diagðviÞ
with vi [ 0. Then, using 1, it follows that the matrix V-1AV

is stable if aii� � 1
vi

P
j 6¼i vjjaijj 8i: Therefore, it follows

(see Zavlanos et al. 2011) that the solution A of P2 is

guaranteed to be stable if it is obtained by solving the

following modified optimization problem P3:
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minimize t
P

i;j

wijjaijj þ ð1� tÞ�

subject to kAX þ BUk1� �; �[ 0

aii� � 1
vi

P
i 6¼j vjjaijj 8i; vi [ 0 8i; A 2 S;

:

where t 2 ½0; 1� is a user defined parameter. The matrices

V and W can be chosen as follows (see Zavlanos et al.

2011). Initialize V = I where I is the identity matrix of

suitable size and set wij = 1 V i,j. Then, repeatedly solve

P3, updating wij using Eq. (2) and vii using

vii¼
: 1þ jaiij�RiðAÞ�b

dþðjaiij�RiðAÞ�bÞ if j aii j �RiðAÞ[ b;
d

d�ðjaiij�RiðAÞ�bÞ if j aii j �RiðAÞ� b;

(

ð3Þ

where b¼:
Pn

i¼1

ðjai;ij � RiðAÞÞ=n.

Remark 1 In Zavlanos et al. (2011), it is claimed that this

procedure, described in [20, Algorithm 2], usually requires

no more than J = 20 iterations but may yield periodic

solutions for certain ill-condition problems.

Remark 2 Zavlanos et al. (2011) (Algorithm 2) is some-

what ad-hoc since the parameter d is left undefined in it.

Remark 3 In Zavlanos et al. (2011), another solution to

P2 is obtained by using the Lyapunov stability theorem to

ensure the stability (see Zavlanos et al. 2011, Algorithm 3).

Main results

The values of vii in the above algorithm can be updated at the

end of each iteration using a number of known results. For

example, it is shown in (Mees 1981) that the optimal diagonal

postcompensator V to render the matrix VA row dominant can

be obtained by computing the left Perron eigenvectors of the

R
n�n nonnegative matrix T having |aij| as its elements, pro-

vided it is a primitive matrix. Also, it is known that the Perron

eigenvalue and its corresponding eigenvector can be easily

computed using the following iterative method: select an

arbitrary unit vector x0, then iterate it as follows:

�xkþ1 ¼ T�xk=kT�xkk ð4Þ

until k�xkþ1 � �xkk\D, where D[ 0 is arbitrarily small.

Now, �xkþ1 is a reasonable approximation of the right perron

eigenvector of T, and its corresponding eigenvalue r can be

obtained by solving T�xkþ1 ’ r�xkþ1 (see Mees 1981). If the

column-dominance of A is to be optimized then the same

procedure should be applied to AT and then the result

should be transposed. Therefore, Perron eigenvector of

T seems to be a good choice for the construction of the

scaling matrix V, where

V ¼: diagð�xkþ1Þ: ð5Þ

Hence, Algorithm 1, an improvement over [Zavlanos

et al. 2011, Algorithm 2], can be stated as follows.

Another approach to modify Algorithm Z so that its

output A is a stable matrix is as follows (see Zavlanos et al.

2011). If the output A is unstable, perturb it by a small

enough perturbation D such that the perturbed matrix

eA¼: Aþ D is stable and, furthermore, an element of S. By

Lyapunov stability theorem, eA is stable if there exists a

P = PT [ 0 such that Hermð eAT PÞ\0, i.e., if

HermðAT Pþ LÞ\0; ð6Þ

where L¼: PD. Now, (6) is an LMI that can be efficiently

solved by solving the following semidefinite program P4:

minimize kLXk2

subject to HermðATPþ LÞ\0; P [ 0;
:

the solution of which gives the perturbation as

D = P-1L (see Boyd and Vandenberghe 2003).

However, while this perturbation ensures the stability of

eA¼: Aþ D; it does not ensure eA 2 S: In Zavlanos et al.

(2011), this difficulty is resolved by using the Lyapunov

matrix P, obtained as a solution of P4, in solving the

following optimization problem P5:

minimize t
Pn

i;j¼1

wij j aij j þð1� tÞ�

subject to kAX þ BUk1� �; �[ 0;
HermðAT PÞ\0; A 2 S:

:

A solution to this problem is given by [20, Algorithm 3].

If the network is sufficiently damped then kGuk2=kuk2

can be approximated by kyssk2=kuk2 where G is the

transfer function of the linearized system, and yss is the

steady-state response of the system, which is the same as

state vector if C = In. Therefore, if sufficient amount of the

steady-state data is available then kGðsÞk1 can be

approximated as:

sup
i
kyi

ssk2=kuik2 ’ kGðsÞk1 ’ c; ð7Þ

where the maximization is performed over the experiment

trials. Now, the well-known bounded real lemma (BRL)

can be used to derive a more powerful network modeling

algorithm.
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Theorem 2 (Bounded Real Lemma (Apkarian et al. 1996)

) Let the system G(s) be given in the state-space form as

_x ¼ Axþ Bu; y ¼ Cxþ Du:

Then, A is stable and kGðsÞk1\c if and only if the system

of LMI’s:

APþ PAT B PCT

BT �cI DT

CP D �cI

2

4

3

5\0; P [ 0

has a symmetrix matrix P as its solution.

Therefore, we can identify out network model by solv-

ing the following optimization problem P6:

minimize t
Pn

i;j¼1

wij j aij j þð1� tÞ�

subject to kAX þ BUk1� �; �[ 0;
APþ PAT B P

BT �cI 0

P 0 �cI

2

4

3

5\0

P [ 0; A 2 S:

:

A solution to this problem is obtained by using

Algorithm 2. In all algorithms considered thus far, the

matrix B is assumed to be known. However, as observed

earlier, such is rarely the case in practice. If A and B both

need to be estimated then more a priori information on A is

required since, otherwise, A = 0 and B = 0 is a trivial

solution to 0 = Ax ? Bu. Such a meaningless solution can

be readily ruled out by stipulating aii \ ri V i for some ri

as a constraint in the optimization problem. This constraint

is valid in reality since every gene and protein down-

regulates its own production through self-degradation.

Using Gershgorin’s circle theorem to guarantee the

stability, the estimation of A and B can be obtained from

the solution of the following optimization problem P7:

minimize t
Pn

i;j¼1

wij j aij j þð1� tÞ�

subject to kAX þ BUk1� �; �[ 0;
HermðATPÞ\0; aii\� ri 8i; A 2 S:

:

where R¼: diagðriÞ 2 R
n�n is a diagonal matrix that has the

self-degeneration rates as its diagonal elements. The

estimation of B introduces a scaling difficulty: if (A*, B*)

is a solution of our optimization problem, then (a A*, a B*)

is also a valid solution for every scalar a that satisfies

|a| \ 1. In fact, scaling by such an a facilitates smaller

modeling errors. This difficulty can be resolved by scaling

A and B by a suitable positive number, say j(A, B), so that

the absolute value of the largest element of A becomes equal

to 1. Depending on its sign, one can then set the elements

having absolute value less than an arbitrary small value such

as, say, m = 10-4: we refer to these matrices as ~A and ~B (see

Algorithm 3). The elements of ~A and ~B are defined as

~aij ¼
aij if jaijj � m;

0 if jaijj\m;

�

~bij ¼
bij if jbijj � m;

0 if jbijj\m:

� ð8Þ

In P4, we solve an optimization problem to find a small

perturbation that makes matrix A stable, while minimizing

an upper bound of the 2-norm of the difference between

AX ? BU and ~AX þ ~BU (see Zavlanos et al. 2011). If the

eigenvectors of A can be estimated well enough then A can

be stabilized by perturbing its eigenvalues while keeping

its eigenvectors fixed. Hence, a revised optimization

problem P8 is as follows:

minimize hkD�1ðkA þ kÞDX þ BUk1 þ ð1� hÞ
Xn

i¼1

k2
i

subject to kA þ k[ 0; k 2 KA;

where KA is the set of matrices having the canonical

structure of the Jordan normal form of A. Now, P can be

obtained by solving

ðAþ D�1kDÞT Pþ PðAþ D�1kDÞ\0: ð9Þ

Then, A and B can be computed by solving P7 iteratively.
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Now, suppose our experimental data can be partitioned

into q separate sets of data, Xi’s, and each set contains the

response of our network to the same input value. Therefore,

we have

kAXi þ BUik ’ 0 i ¼ 1; . . .; q; Xi 2 R
n�mi ; Ui 2 R

p�mi ;

ð10Þ

where mi [ 0 is the number of data columns in each set,
P

i=1
q mi = m, and all columns of Ui’s are the same. Now,

if we construct matrix Xi0 2 R
n�mi with columns equal to

one arbitrarily column chosen from Xi, it holds that

kAðXi � Xi0Þk ¼ kðAXi þ BUiÞ � ðAXi0 þ BUiÞk\kðAXi

þ BUiÞk þ kðAXi0 þ BUiÞk ’ 0 8i:

Therefore, we can claim that X0 = [i=1
q (Xi - Xi0)

approximately spans the subspace corresponding to the

eigenvectors corresponding to the small eigenvalues of

A. As a result, Algorithm Z estimates the eigenvectors of

matrix A regardless of its stability. Assuming that the

eigenvectors can be estimated well enough, A can be

stabilized by perturbing its eigenvalues while keeping its

eigenvectors fixed. This gives rise to a revised optimization

problem P9 presented below:

minimize hkD�1ðkA þ kÞDX þ BUk1 þ ð1� hÞ
Pn

i¼1

k2
i

subject to kA þ k [ 0; k 2 KA;
:

ð11Þ

where KA is the set of matrices having the canonical

structure of the Jordan normal form of A. Now, we can

derive the positive definite Lyapanov matrix P by solving

Eq. (9) and then compute A and B by solving P7 iteratively.

This solution is implemented in Algorithm 4.

Results and discussion

Comparison of our algorithms with the algorithms

derived in Zavlanos et al. (2011)

We now present a brief case-study that compares the per-

formance of our algorithms with that of the algorithms

presented in Zavlanos et al. (2011) for the same synthetic

dataset. For this comparison, a wide range of the parameter

t is chosen. To provide results consistent with the ones

given in Zavlanos et al. (2011), the receiver operating

characteristic (ROC) curves are used as the performance

measures. Following (Zavlanos et al. 2011), we define

sensitivity and specificity as follows:

Clearly, an identification with 100% sensitivity and spec-

ificity is the best possible result. We used the method

described in Sect. 5 of Zavlanos et al. (2011) to generate the

20 9 20 random sparse matrix A, and its associated dataset

X as X = - A-1BU ? m N where BU 2 R
n�m and

N 2 R
n�m are zero mean and unit variance normally distrib-

uted random matrices. Then, we identified the system from

both full datasets and partial datasets for several values of

t. For the case of full dataset, the number of samples are equal

to the dimension of the system matrix, i.e., m = n, the noise

coefficient is m = 10%, and a priori knowledge is available

for 30% of the matrix entries. For the case of partial dataset, no

a priori knowledge is available, the noise coefficient is

Sensitivity ¼ The Number of Correctly Identified Non� Zero Elements

The Number of Non-Zero Elements
;

Specificity ¼ The Number of Correctly Identified Zero Elements

The Number of Zero Elements
:
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m = 50%, and the number of samples is roughly one third of

the dimension of matrix A. The results are shown in Figs. 1

and 2. The simulation results show that our algorithms per-

form at least as well as the ones derived in Zavlanos et al.

(2011): the improvement is not surprising since besides

reducing the conservatism in the stability constraint used in

Zavlanos et al. (2011), we have not altered the structure of the

algorithms (Zavlanos et al. 2011) by a great extent.

Illustrative example: GRN for malaria patients

Malaria is a mosquito-borne infectious disease caused in

humans and other animals by eukaryotic protists of the

genus Plasmodium. Five species of Plasmodium can infect

humans with this disease. Among these, the infection from

Plasmodium falciparum can be fatal. The infection caused

by others, including Plasmodium vivax, is rarely fatal. We

now reconstruct the gene-protein regulatory network using

two sets of expression data on 30 proteins collected from

patients suffering from malaria. GeneSpring version 11.5.1

was used to perform the pathway analysis. GeneSpring has

its own pathway database wherein the relations in the

database were mainly derived from published literature

abstracts using a proprietary Natural Language Processing

(NLP) algorithm. Additional interactions from experi-

mental data available in public repositories like IntAct

were also included in the pathway database of GeneSpring.

The list of Entrez IDs corresponding to the proteins was

used to find the key interactions involved in Malaria. The

data collected from patients infected by Plasmodium fal-

ciparum is tagged FM whereas the data was collected from

patients infected by Plasmodium vivax is tagged VM. In

addition, we collected the expression data for healthy

control samples as well. This data is tagged HC. In all,

there are 8 sets of data for HC and a combined 8 sets of

data for FM and VM.

X1 ¼
HC11 VM1

HC12 VM2

� �

;X2 ¼
HC21 FM1

HC22 FM2

� �

;

where HC11 2 R
18�8;VM1 2 R

18�8;HC12 2 R
12�8;VM2 2

R
12�8;HC21 2 R

18�8;FM1 2 R
18�8;HC22 2 R

12�8, and

FM2 2 R
12�8. As can be seen, we partitioned the data

rows into two parts (one with 18 rows and one with 12

rows). The reason is that among the proteins with available

differential expression, only 18 are common in the two data

sets, therefore, there are 12 proteins in each data set that

expressed in only one type of Malaria. Since our objective

was to derive a unified network model, we needed a

method to somehow integrate these sets of data together.

Hence, we used the average expression values of healthy

control samples in one data set to replace the expression

value data that are not exhibited in another data set. The

reason behind what we did is that if a particular protein, for

example P 00751, is specific for Falciparum Malaria, it

indicates there is no change in expression level in vivax

malaria for that specific protein, hence, we can take the

same value that is exhibited by healthy controls. Thus, our

matrix X 2 R
42�32 is:

X ¼
HC11 HC21 FM1 VM1

HC12 HC12 HC12 VM2

HC22 HC22 FM2 HC22

2

4

3

5;

where M represents a matrix with entries equal to the

average of elements in the same row of matrix M. Taking

each type of Malaria as an independent input to the system,
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Fig. 1 ROC plots for the case of full data, ROC plots of different

algorithms for a network of size n = 20 and connectivity c = 20 %

using full data (m = n, r = 30 % and m = 10 %)
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Fig. 2 ROC plots for the case of partial data, ROC plots of different

algorithms for a network of size n = 20 and connectivity c = 20 %

using partial data ðm ¼ dn
3
e;r ¼ 0 % and m = 50 %)
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i.e. UFM = [1 0]T and UVM = [0 1]T, the input matrix

U 2 R
2�30 corresponding to our dataset X is U = [M1 M2

M3], where M1 2 R
2�16 is an all-zero matrix, and

M2;M3 2 R
2�8 are given as

M2 ¼
1 1 . . . 1

0 0 . . . 0

� �

; M3 ¼
0 0 . . . 0

1 1 . . . 1

� �

:

Now, we can model the system as _X ¼ AX þ BU. Using

the first 29 columns of X, we trained our network model

using Algorithm Z and [20, Algorithm 2]. Verification of

our results using the remaining columns of our data showed

that [20, Algorithm 2] is not working in this case, and

generates a very large error which may be caused by the

very conservative stability condition laid down by

Gershgorin’s Circle Theorem. However, Algorithm [20,

Algorithm 3] works properly with a fairly low error of

kAX þ BUk1 ’ 0:01. We used Cytoscape (see Smoot et al.

2011) to visualize the matrix as a network of interactions.

Interactions between all proteins in the matrix were

specified in the Simple Interaction File (sif) format and

were given to Cytoscape as the input. The SIF file lists each

interaction using a source node, a relationship type (or edge

type), and the target node. For example, for proteins P1 and

P2, the structure P1 1 P2 represents the relationship P1

activates P2 and the structure P1 21 P2 represents the

relationship P1 inhibits P2. The edges in the resulting

network are colored by their interaction - a green edge

represents activation and a red edge represents inhibitory

interaction between the proteins. A representative network

diagram is shown in Fig. 3.

Conclusion

We have presented a theoretical framework, and associated

algorithms, to obtain a class of nonlinear ordinary differ-

ential equation (ODE) models of gene regulatory networks

assuming the availability of literature curated data and

microarray data. We build on a linear matrix inequality

(LMI) based formulation developed recently by Zavlanos

et al. (2011) to obtain linear ODE models of such net-

works. However, whereas the solution proposed in Zavl-

anos et al. 2011) requires that the microarray data be

obtained as the outcome of a series of controlled experi-

ments in which the network is perturbed by over-express-

ing one gene at a time, this requirement is not necessary to

implement our approach. We have shown how the algo-

rithms derived in Zavlanos et al. (2011) can be easily

extended to derive the required stable linear ODE model.

In addition, we have built on these algorithms by using new

stability constraints that ensure the diagonal dominance of

a given matrix: our case study on a synthetic dataset shows

that our algorithms perform at least as well as those given

in Zavlanos et al. (2011). We have then presented a case-

study of how these algorithms can be applied to derive a

protein regulatory network model of malaria-infected

Fig. 3 Gene-protein regulatory network for malaria infected subjects,

the gene-protein regulatory network in malaria affected patients. The

network has 30 nodes. GeneSpring version 11.5.1 was used to

perform the pathway analysis in data collected from hospital patients.

Then, our algorithms to obtain linear ODE models of the form _x ¼
Axþ Bu were run on the data. This diagram illustrates the network

interconnection, determined by the matrix A, and is created using

Cytoscape. Green edges represent activation whereas red edges
represent inhibition

Table 1 Notation

Symbol Meaning

ðRþÞR Set of all (nonnegative) real numbers

R
n n-dimensional (n 9 m) real-valued vector (matrix)

R
n�m n 9 m real-valued matrix

C Set of all complex numbers

Z Set of all integers

ð�Þ0 or ð�ÞT Transpose of a vector or a matrix ð�Þ
Hermð�Þ 1

2
ðð�Þ þ ð�ÞT Þ . . . (Hermitian of ð�Þ)

Sn

i¼1

Xi
Union of the n sets Xi

Xi \ Xj Intersection of the sets Xi and Xj

A C 0 (A \ 0) A is positive semidefinite (negative definite).

kzk1 ¼
P

i

jzij if z is a vector ð¼
P

i;j

jzi;jj if z is a matrix)

cardðAÞ Number of nonzero elements of A . . . (cardinality)

ki(A) i-th eigenvalue of the matrix A

diag(ai) Diagonal matrix with ai as its diagonal elements

_x =dx/dt (derivative of x with respect to time)
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patients. Our approach to network reconstruction differs

from that of Yuan et al. (2010) in that (Yuan et al. 2010)

needs a large number of data samples that are in either a

cue-response form or in a time-series form. Our approach

to network reconstruction differs from that of Sontag

(2008) in that (Sontag 2008) mandates that the data sam-

ples should be the outcomes of independent perturbations

to the so-called modules of the network. We have imple-

mented our algorithms in MATLAB to successfully

reconstruct a sparse 35-node network in which the maxi-

mum number of nodes adjacent to a node is 9 (Table 1).
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