
Synchronous Sequential Computation
with Molecular Reactions

(Authorship withheld.)

ABSTRACT
Just as electronic systems implement computation in terms of

voltage (energy per unit charge), molecular systems compute in
terms of chemical concentrations (molecules per unit volume). Prior
work has established mechanisms for implementing logical and
arithmetic functions including addition, multiplication, exponen-
tiation, and logarithms with molecular reactions. In this paper,
we present a general methodology for implementing synchronous
sequential computation. We generate a four-phase clock signal
through robust, sustained chemical oscillations. We implement
memory elements by transferring concentrations between molec-
ular types in alternating phases of the clock. We illustrate our de-
sign methodology with examples: a binary counter as well as a
four-point, two-parallel FFT. We validate our designs through ODE
simulations of mass-action chemical kinetics. We are exploring
DNA-based computation via strand displacement as a possible ex-
perimental chassis.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development—Mod-

eling Methodologies

General Terms
Design

Keywords
Molecular Computation, Synthetic Biology, Computational Bi-

ology, Digital Design, Synchronous Logic, Sequential Logic

1. INTRODUCTION
There has been a groundswell of interest in molecular compu-

tation in recent years [12, 14, 17, 23]. Broadly, the field strives
for molecular implementations of computational processes – that
is to say processes that transform input concentrations of chemical
types into output concentrations of chemical types. Some of the
early work in the field discussed molecular solutions to challeng-
ing combinatorial problems such as the Hamiltonian Path Problem

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

and Boolean Satisfiability [1]. In spite of the claims of “massive
parallelism” – 100 Teraflop performance in a test tube! – such ap-
plications were never compelling. Chemical systems are inherently
slow and messy, taking minutes or even hours to finish, and pro-
ducing fragmented results. Such systems will never be competi-
tive with conventional silicon computers for tasks such as number
crunching.

And yet the broad impetus of the field is not computation per
se. Rather it is the design of “embedded controllers” – chemical
reactions, engineered into biological systems such as viruses and
bacteria, to perform useful molecular computation in situ where it
is needed. For example, consider a system for chemotherapy drug
delivery with engineered bacteria. The goal is to get bacteria to
invade tumors and selectively produce a drug to kill the cancerous
cells. Embedded control of the bacteria is needed to decide where
and how much of the drug they should deliver. The computation
could be as simple as: “If chemical type X is present, produce
chemical type Y ” where X is a protein marker of cancer and Y is
the chemo drug. Or it could be more complicated: produce Z if X
is present and Y is not present or vice-versa (i.e, an exclusive-or
function). Or it could be time-varying computation: produce Z if
the rate of change of X is within certain bounds (i.e., band-pass
filtering). Exciting recent work along these lines includes [2] and
[18].

There have been deliberate attempts to bring concepts from dig-
ital circuit design into the field [3, 4, 5, 20, 19, 22, 21]. Prior work
has described a computational constructs for chemical reaction net-
works: logical operations such as copying, comparing and incre-
menting/decrementing [15]; programming constructs such as “for”
and “while” loops [16]; arithmetic operations such as multiplica-
tion, exponentiation and logarithms [15, 16]; and signal processing
operations such as filtering [9, 13]. Building on this prior work,
we present a general methodology for implementing synchronous
sequential computation.

1.1 Computational Model
A molecular system consists of a set of chemical reactions, each

specifying a rule for how types of molecules combine. For instance,

A+B
k−→ 2C (1)

specifies that one molecule of A combines with one molecule of B
to produce two molecules of C. This reaction fires at a rate propor-
tional to a kinetic constant k. We model the molecular dynamics in
terms of mass-action kinetics [7, 8]: reaction rates are proportional
to (1) the quantities of the participating molecular types; and (2)
the kinetic constants. Accordingly, for the reaction above, the rate

of change in the concentrations of A, B and C is

−d[A]
dt

= −d[B]

dt
= 2

d[C]

dt
= k[A][B], (2)

(here [·] denotes concentration). Most prior schemes for molecu-
lar computation depend on specific values of the kinetic constants
(the k’s associated with each reaction.) This limits the applicability
since the kinetic constants are not constant at all; they depend on
factors such as cell volume and temperature.

We aim for robust constructs: in our methodology we use only
coarse rate categories (“fast” and “slow”). Given such categories,
the computation is exact and independent of the specific reaction
rates. In particular, it does not matter how fast any “fast” reaction
is relative to another, or how slow any “slow” reaction is relative
to another – only that “fast” reactions are fast relative to “slow”
reactions.

1.2 Organization
The rest of the paper is organized as follows. In Section 2, we

present a design methodology for synchronous sequential computa-
tion, based on clocking with chemical oscillations. We implement
memory elements – flip-flops – by transferring concentrations be-
tween molecular types in alternating phases of the clock. In Sec-
tions 3 and 4, we present two detailed design examples: a three-bit
binary counter and a four-point, two-parallel FFT. In Section 5, we
present simulations. Finally, in Section 6, we conclude the paper
with a discussion of possible experimental applications and future
directions.

2. SYNCHRONOUS SEQUENTIAL COMPU-
TATION

The general structure of our design is illustrated in Figure 1. As
in an electronic system, our molecular system consists of separate
reactions that implement computation and memory. A clock sig-
nal synchronizes transfers between computation and memory. For
the computational reactions, we refer the reader to prior work [9,
15, 16]. Operations such as addition and scalar multiplication are
straightforward. Operations such as multiplication, exponentiation,
and logarithms are trickier. These can be implemented with re-
actions that implement iterative constructs analogous to “for” and
“while” loops. (They do so robustly and exactly, without any spe-
cific dependence on the rates.)

The contribution of this paper consists of a new method for clock
signal generation and for implementing memory.

2.1 Clock Generation
In electronic circuits, a clock signal is generated by an oscilla-

tory circuit that produce periodic voltage pulses. For a molecular
clock, we choose reactions that produce sustained oscillations in
the chemical concentrations. With such oscillations, a low concen-
tration corresponds to logical value of zero; a higher concentration
corresponds to a logical value of one. Techniques for generating
chemical oscillations are very well-known in the literature. Clas-
sic examples include the Lotka-Volterra, Brusselator and Arsenite-
Iodate-Chlorite systems [6, 10]. However, none of these schemes
are quite suitable for synchronous sequential computation. We re-
quire that the clock signal be perfectly symmetrical, with abrupt
transitions between the phases.

Here we present a new design for a 4-phase chemical oscilla-
tor. The clock phases are represented by molecular types R(ed),
G(reen), B(lue), and Y (ellow). First consider the reactions

Reactions that

Transform

Concentrations

(Computation)

Reactions that Preserve

Concentrations

(Memory)

Chemical Oscillation

(Clock)

Molecular

Concentrations

(Input)

Molecular

Concentrations

(Output)

Figure 1: Block diagram of a synchronous sequential system.

∅ slow−→ r

∅ slow−→ g

∅ slow−→ b

∅ slow−→ y

(3) and

R+ r
fast−→ R

G+ g
fast−→ G

B + b
fast−→ B

Y + y
fast−→ Y.

(4)

Reactions 3 generates molecular types r, g, b, and y slowly and
constantly. Here the symbol ∅ indicates “no reactants” meaning
the products are generated from a large or replenishable source. In
Reactions 4, the types R, G, B, and Y quickly consume the types
r, g, b, and y, respectively. Call R, G, B, and Y the phase signals
and r, g, b, and y the absence indicators. The latter are only present
in the absence of the former. The reactions

R+ y
slow−→ G

G+ r
slow−→ B

B + g
slow−→ Y

Y + b
slow−→ R

(5)

transfer one phase signal to another, in absence of its previous one.
The essential aspect is that, within the RGBY sequence, the full
quantity of the preceding type is transfered to the current type be-
fore the transfer to the succeeding type begins.

To achieve sustained oscillation, we introduce positive feedback.
This is provided by reactions

2G
slow−⇀↽−
fast

IG

R+ IG
fast−→ 3G

2B
slow−⇀↽−
fast

IB

G+ IB
fast−→ 3B

2Y
slow−⇀↽−
fast

IY

B + IY
fast−→ 3Y

2R
slow−⇀↽−
fast

IR

Y + IR
fast−→ 3R.

(6)

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Unitless Time

U
n

it
le

s
s
 C

o
n

c
e

n
tr

a
ti
o

n

R

B

Figure 2: ODE simulation of the chemical kinetics of the proposed
clock.

Consider the first two reactions. Two molecules ofG combine with
one molecule of R to produce three molecules of G. The first step
in this process is reversible: two molecules of G can combine, but
in the absence of any molecules of R, the combined form will dis-
sociate back into G. So, in the absence of R, the quantity of G will
not change much. In the presence of R, the sequence of reactions
will proceed, producing one molecule of G for each molecule of R
that is consumed. Due to the first reaction 2G

slow−→ IG, the transfer
will occur at a rate that is super-linear in the quantity of G; this
speeds up the transfer and so provides positive feedback.1

Suppose that the initial quantity of R is set to some non-zero
amount, and the initial quantity of the other types is set to zero. We
will get an oscillation among the quantities of R, G, B, and Y . We
choose two nonadjacent phases, R and B, as the clock phases.

Our scheme for chemical oscillation works remarkably well. Fig-
ure 2 shows the concentrations of R and B as a function of time,
obtained through ordinary differential equation (ODE) simulations
of the reactions 3, 4, 5 and 6. We note that theR (red) andB (blue)
phases are non-overlapping.

2.2 Memory
To implement sequential computation, we must store and trans-

fer signals across clock cycles. In electronic systems, storage is
typically implemented with flip-flips. In our molecular system, we
implement storage and transfer using a two-phase protocol, syn-
chronized on phases of our clock. Every memory unit Si is as-
signed two molecular types D′i and Di. Here D′i is the first stage
and Di the second.

The blue phase reactions are:

B +Di
fast−→ Computations+B

Computations
fast−→ D′j .

(7)

Every unit Si releases the signal it stores in its second stage Di.
The released signal is operated on by reactions in computational
modules. These generate results and push the them into the first
stages of succeeding memory units. Note that D′j molecules will
be the first stage of any succeeding memory unit Sj along the signal
path from Si.

1A rigorous discussion of chemical kinetics is beyond the scope of
this paper. Interested readers can consult [6].

Blue PhaseComputations

D’1,…,n
(First Stage)

D1,…,n
(Second Stage)

Red Phase

Figure 3: The two-phase memory transfer scheme.

The red phase reactions are

R+D′i
fast−→ Dj +R. (8)

Every unit Si transfers the signal it stores in D′i to Dj , preparing
for the next cycle. For the equivalent of delay (D) flip-flops in
digital logic, i = j. For other types of memory units, i and j
can be different. For example, for a toggle (T) flip-flop, Sj is the
complementary bit of Si: D′i −→ Dj and D′j −→ Di toggle
the pair of bits in each clock cycle. The transfer diagram for our
memory design is shown in Figure 3.

3. A BINARY COUNTER
As our first design example, we present a three-bit binary counter.

(It can readily be generalized to an arbitrary number of bits.). The
counter consists of three identical stages, each of which processes
a single bit. The block diagram of a stage is shown in Figure 4a.

In the nth stage, there are two memory units Tn
1 and Tn

0 that
form a T flip-flop. The presence of molecules of Tn

1 indicates that
this bit is logical one; the presence of molecules of Tn

0 indicates
that this bit is logical zero. If we provide a non-zero initial con-
centration to one of the two types, then either T0 or Tn

1 will al-
ways be present. Applying the memory implementation discussed
in Section 2.2, we have types T ′n1 and T ′n0 as the first stages of the
memory units.

The red phase reactions are

R+ T ′n1
fast−→ Tn

0 +R

R+ T ′n0
fast−→ Tn

1 +R.
(9)

These toggle each bit. The blue phase reactions are

In−1 + Tn
0

fast−→ T ′n0

In−1 + Tn
1

fast−→ T ′n1 + In. (10)

These simply feed the output of each T flip-flop back to its input.
Note that the T flip-flops transfer molecules only when there are

molecules of In−1 injected from the previous stage. If the bit is
logical one, i.e., Tn

1 is present, then molecules of In are injected
into the next stage.

Figure 4b illustrate three connected stages. Reaction

B + Inj
fast−→ I0 +B (11)

transfers the external injection Inj to I0 in the blue phase. Since
this reaction is the very first of all computational reactions, all in-
jection signals In are generated in the blue phase. Accordingly, B
is not required in Reaction 10, so long as In is among the reac-
tants.

I
n-1

T flip-flop

T’0
n

T’1
n

T0
n

T1
n

I
n-1

CLK

T1
n

In

Unit for

nth bit

(a) Block diagram of one stage of the counter.

INJ

CLK

T1
1

I
0

T1
2

T1
3

T1
1

T1
2

T1
3

I
1

I
1

I
2

I
2

I
3

(b) Connecting the stages.

Figure 4: The binary counter.

4. A TWO-PARALLEL FFT DESIGN
We present a second design example, a four-point two-parallel

fast Fourier transform (FFT). The FFT operation is canonical in
signal processing. It can have a parallel pipelined architectures for
high throughput [11]. A block diagram is shown in Figure 5. As-
sume that the system starts at clock cycle 1. The first two inputs
are sampled in cycle 1; the last two inputs are sampled in cycle 2.
The system generates the first outputs in cycle 3; it generates the
last two outputs in cycle 4.

There are four switches in this design. Each selects one of the
two incoming signals alternatively in different cycles. To achieve
this switching functionality in our molecular design, we use two
alternating selection signals. We generate these with a pair of D-
flip-flops, as shown in Figure 6. If there is a non-zero initial con-
centration of S′1, then S′0 and S′1 will be “turned on” once every
two cycles, in alternating fashion, starting with S′1. We implement
this computation with following reactions:

R+ S′0
fast−→ S0 +R

R+ S′1
fast−→ S1 +R

B + S1
fast−→ S′0 +B

B + S0
fast−→ S′1 +B

(12)

The transfer reactions enabled by S′1 or S′0 implement the switches.
Note that it is S′1 and S′0, not S1 and S0, that enable the switches,
because they are generated in blue phase.

S’0 S1

S’1S0

CLK

Figure 6: Generating the selection signals.

In this system, signals are complex numbers. Both the real and
the imaginary parts can be negative numbers. To represent the sig-
nals, each number X is assigned four molecular types Xp, Xn,
X∗p , and X∗n. The first two are assigned to the real parts: Xp rep-
resents the positive component and Xn the negative component.
The last two are assigned to the imaginary parts: X∗p represents the
positive component and X∗n the negative component. Therefore,
X = [Xp]− [Xn] + j([X∗p]− [X∗n]).

Adders are implemented by assigning input edges and output
edges to the same molecular type [9]. Note that there are two nega-
tive input edges in the lower two adders. Signals from the negative
input edge will be transferred to the opposite component. For ex-
ample, at the n + 1st clock cycle, M1 is transferred to O1 and O2

as

S′1 +M1,p
fast−→ O1,p +O2,n + S′1

S′1 +M1,n
fast−→ O1,n +O2,p + S′1

S′1 +M∗1,p
fast−→ O1,p +O∗2,n + S′1

S′1 +M∗1,n
fast−→ O1,n +O∗2,p + S′1

(13)

or simply

S′1 +M1
fast−→ O1 +O−2 + S′1. (14)

Also, for each number X , the reactions

Xp +Xn
fast−→ ∅

X∗p +X∗n
fast−→ ∅

(15)

are required. They cancel out equal concentrations of positive and
negative components by transferring them to an external sink.

There is a −j multiplication in the system. It is implemented by

S′1 +M2,p
fast−→ D′∗4,n + S′1

S′1 +M2,n
fast−→ D′∗4,p + S′1

S′1 +M∗2,p
fast−→ D′4,n + S′1

S′1 +M∗2,n
fast−→ D′4,p + S′1

(16)

or simply

S′1 +M2
fast−→ D′−∗4 + S′1 (17)

which transfers real/imaginary parts to imaginary/real parts with
opposite polarity.

I1
D1

D2

D3

D4
I2

2n+1

2n

2n+1

2n

2n+1

2n

2n+1

2n

2n

2n+1

M1

_ _

M2

O1 O1

O2 O2

-j

Figure 5: Block diagram of a 4-point pipelined FFT design.

Based on the computational operations discussed above, we have
the blue phase reactions

I1 + S′1
fast−→ D′1 + S′1

I1 + S′0
fast−→ M1 +M−2 + S′0

I2 +B
fast−→ D′2 +B

D2 + S′0
fast−→ D′1 + S′0

D2 + S′1
fast−→ M1 +M−2 + S′1

D1 +B
fast−→ M1 +M2 +B

M2 + S′1
fast−→ D′−∗4 + S′1

M2 + S′0
fast−→ D′4 + S′0

M1 + S′0
fast−→ D′3 + S′0

M1 + S′1
fast−→ O1 +O−2 + S′1

D3 +B
fast−→ O1 +O2 +B

D4 + S′0
fast−→ O1 +O−2 + S′0

D4 + S′1
fast−→ D′3 + S′1.

(18)

Note that S′0 and S′1 are generated in the blue phase. It is not nec-
essary to list B if a reaction is enabled by S′0 or S′1.

The red phase reactions are

R+D′1
fast−→ D1 +R

R+D′2
fast−→ D2 +R

R+D′3
fast−→ D3 +R

R+D′4
fast−→ D4 +R.

(19)

So the full design of the four-point, two-parallel FFT consists of
Reactions 12, 18 and 19, together with the positive/negative can-
celing reactions as well as the clock generation reactions.

5. SIMULATIONS
We present simulation results for the binary counter and for the

FFT. For each design, we list our choice of kinetic constants corre-
sponding to “slow” and “‘fast” as well as the initial concentrations
of the molecular types. We assume that an external source sets the
concentrations of the input types to new values at specific inter-
vals. We setup ordinary differential equations corresponding to the
mass-action kinetics of the reactions and solve these numerically
with MATLAB.

5.1 Transient Response

5.1.1 Counter
For the three-bit counter, we set the initial concentrations of T 0

0 ,
T 1
0 , and T 2

0 to 10 (corresponding to bits “000”) and R to 100. We

set the initial concentrations of all the other molecular types to 0.
We set the concentration of type Inj to 10 at time points 50, 500,
1000, 1500, 2000, 2500, 3000. We set kfast to 100; and kslow to 1.
The results of a MATLAB ODE simulation are shown in Figure 7.
We see that the bit signals T 0

1 , T 1
1 , and T 2

1 toggle at the correct

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

7

8

9

10

Unitless Time

U
n
it
le

s
s
 C

o
n
c
e
n
tr

a
ti
o
n

D
0

1

D
1

1

D
2

1

Figure 7: Transient simulation result of the counter.

time points. The system counts the number of injection events from
“000” to “111” correctly.

One observation from Figure 7 is that the concentrations of T 0
1 ,

T 1
1 , and T 2

1 when the corresponding bit is “1” degrade slowly over
time. This is because of slightly overlapped clock phases. There is
always a slight leakage amount of R in the blue phase and a slight
amount of B in the red phase. This error accumulates over time,
due to the feedback loop in each stage of the counter. To mitigate
against this, we could select a higher ratio of λ = kfast

kslow
.

5.1.2 FFT
For our FFT design, we the set initial concentration of S′0 to 50

and that of R to 100. Recall that S′0 is transferred to S0 in the first
red phase and S0 is transferred to S′1 in first blue phase. So the
computation begins with S′1. We set the initial concentrations of
all the other types to 0. We inject I1 and I2 in the red phase. The
output types O1 and O2 are built in clock cycle 3, in a blue phase.
We clear them out in following red phase. We set kfast to 100; and
kslow to 1. The results of a MATLAB ODE simulation are shown
in Figure 8. The inputs are a sequence of real numbers {10, 15, 10
,0}. The outputs are {35, -15j, 5, 15j}, as shown in the figure.

Since there is no feedback in the FFT architecture, no error due
to leakage of R and B accumulates.

5.2 Error Analysis

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

R

B

S’
0

S’
1

O
1,p

O
2,p

O
*

1,n

O
*

2,p

Figure 8: Transient simulation result of the FFT design.

Table 1: Relative error in simulations.

λ
Counter (Average
error per cycle per
bit)

FFT

10 0.9871% 28.107%
100 0.2078% 3.5428%

1000 0.0169% 0.2691%

We analyze computational errors of the counter and the FFT de-
sign in terms of the fast-to-slow ratio λ. For the counter, the error
is defined as the differences of concentrations from a perfect “0” or
“1”. We consider the average error accumulated in one clock cycle
for one bit. For the FFT design, we consider the relative error of the
simulated outputs compared to theoretical outputs. These errors are
listed in Table 1. As expected, we see that the error decreases as λ
increases: with a higher fast-to-slow ratio, fewer reactions misfire
– that is, fire in the wrong clock phase.

6. REMARKS
This paper presents the first robust, rate-independent methodol-

ogy for synchronous computation. Here “rate-independent” refers
to the fact that, within a broad range of values for the kinetic con-
stants, the computation is exact and independent of the specific
rates. Of course, outside of this range, the accuracy of the computa-
tion degrades. The results in this paper are complementary to prior
results on self-timed methodologies for molecular computation [9].
Those had a distinct asynchronous flavor. As in electronic circuit
design, there are advantages and disadvantages to asynchronous
and synchronous design styles for molecular computing. On the
one hand, a synchronous style leads to simpler designs with fewer
reactions. On the other hand, errors can accumulate across clock
cycles.

We are exploring the mechanism of DNA strand-displacement
as an experimental chassis [17]. DNA strand-displacement reac-
tions can emulate chemical reactions with nearly any rate structure.
Reaction rates are controlled by designing sequences with differ-
ent binding strengths. The binding strengths are controlled by the
length and sequence composition of “toehold” sequences. With
the right choice of toehold sequences, reaction rates differing by as
much as 106 can be achieved. Our contribution can be positioned
as the “front-end” of the design flow – analogous to technology-

independent design. DNA assembly can be considered the “back-
end” – analogous to technology mapping to a specific library.

7. REFERENCES
[1] L. Adleman. Molecular computation of solutions to combinatorial

problems. Science, 266(11):1021–1024, 1994.
[2] J. C. Anderson, E. J. Clarke, A. P. Arkin, and C. A. Voigt.

Environmentally controlled invasion of cancer cells by engineered
bacteria. Journal of Molecular Biology, 355(4):619–627, 2006.

[3] J. C. Anderson, C. A. Voigt, and A. P. Arkin. A genetic AND gate
based on translation control. Molecular Systems Biology, 3(133),
2007.

[4] A. Arkin and J. Ross. Computational functions in biochemical
reaction networks. Biophysical Journal, 67(2):560 – 578, 1994.

[5] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro. An
autonomous molecular computer for logical control of gene
expression. Nature, 429(6990):423–429, 2004.

[6] I. R. Epstein and J. A. Pojman. An Introduction to Nonlinear
Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos.
Oxford Univ Press, 1998.

[7] P. Érdi and J. Tóth. Mathematical Models of Chemical Reactions:
Theory and Applications of Deterministic and Stochastic Models.
Manchester University Press, 1989.

[8] F. Horn and R. Jackson. General mass action kinetics. Archive for
Rational Mechanics and Analysis, 47:81–116, 1972.

[9] H. Jiang, A. P. Kharam, M. D. Riedel, and K. K. Parhi. A synthesis
flow for digital signal processing with biomolecular reactions. In
IEEE International Conference on Computer-Aided Design, pages
417–424, 2010.

[10] P. D. Kepper, I. R. Epstein, and K. Kustin. A systematically designed
homogeneous oscillating reaction: the arsenite-iodate-chlorite
system. Journal of the American Chemical Society,
103(8):2133–2134, 2008.

[11] K. K. Parhi. VLSI Digital Signal Processing Systems. John Wiley &
Sons, 1999.

[12] L. Qian, D. Soloveichik, and E. Winfree. Efficient turing-universal
computation with DNA polymers. In International Conference on
DNA Computing and Molecular Programming, 2010.

[13] M. Samoilov, A. Arkin, and J. Ross. Signal processing by simple
chemical systems. Journal of Physical Chemistry A,
106(43):10205–10221, 2002.

[14] G. Seelig, D. Soloveichik, D. Y. Zhang, and E. Winfree. Enzyme-free
nucleic acid logic circuits. In Science, number 314, pages
1585–1588, 2006.

[15] P. Senum and M. D. Riedel. Rate-independent biochemical
computational modules. In Proceedings of the Pacific Symposium on
Biocomputing, 2011.

[16] A. Shea, B. Fett, M. D. Riedel, and K. Parhi. Writing and compiling
code into biochemistry. In Proceedings of the Pacific Symposium on
Biocomputing, pages 456–464, 2010.

[17] D. Soloveichik, G. Seelig, and E. Winfree. DNA as a universal
substrate for chemical kinetics. Proceedings of the National Academy
of Sciences, 107(12):5393–5398, 2010.

[18] S. Venkataramana, R. M. Dirks, C. T. Ueda, and N. A. Pierce.
Selective cell death mediated by small conditional RNAs.
Proceedings of the National Academy of Sciences, 2010 (in press).

[19] R. Weiss. Cellular Computation and Communications using
Engineering Genetic Regulatory Networks. PhD thesis, MIT, 2003.

[20] R. Weiss, G. E. Homsy, and T. F. Knight. Toward in vivo digital
circuits. In DIMACS Workshop on Evolution as Computation, pages
1–18, 1999.

[21] M. Win, J. Liang, and C. Smolke. Frameworks for programming
biological function through RNA parts and devices. Chemistry &
Biology, 16:298–310, 2009.

[22] M. N. Win and C. D. Smolke. A modular and extensible RNA-based
gene-regulatory platform for engineering cellular function.
Proceedings of the National Academy of Sciences, 104(36):14283,
2007.

[23] B. Yurke, A. J. Turberfield, A. P. Mills, Jr, F. C. Simmel, and
J. Neumann. A DNA-fuelled molecular machine made of DNA.
Nature, 406:605–608, 2000.

