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ABSTRACT
In two-level logic synthesis, the typical input specification is a set
of minterms defining the on set and a set of minterms defining the
don’t care set of a Boolean function. The problem is to synthe-
size an optimal set of product terms, or cubes, that covers all the
minterms in the on set and some of the minterms in the don’t care
set. In this paper, we consider a different specification: instead of
the on set and the don’t care set, we are given a set of numbers,
each of which specifies the number of minterms covered by the in-
tersection of one of the subsets of a set of λ cubes. We refer to the
given set of numbers as an intersection pattern. The problem is to
deterimine whether there exists a set of λ cubes to satisfy the given
intersection pattern and, if it exists, to synthesize the set of cubes.
We show a necessary and sufficient condition for the existence of
λ cubes to satisfy a given intersection pattern. We also show that
the synthesis problem can be reduced to the problem of finding a
non-negative solution to a set of linear equalities and inequalities.

1. INTRODUCTION
Two-level logic synthesis is a well-developed and mature topic [1,

2]. The typical input specification for a two-level synthesis prob-
lem is the on set and the don’t care set (or in some cases, the off set)
of a Boolean function. The on set and the don’t care set consist of
minterms that define when the function evaluates to one and when
its evaluation can be either zero or one, respectively. The problem
is to synthesize an optimal set of product terms, or cubes, that cov-
ers all the minterms in the on set and some of the minterms in the
don’t care set.

In this work, we consider a related yet different problem per-
taining to the synthesis of a set of cubes. A set of cubes, besides
defining a Boolean function, also defines a set of numbers, each of
which corresponds to the number of minterms covered by the in-
tersection of one of the subsets of the set of cubes. For example,
given a set of three cubes on four variables x0, x1, x2, x3, which
are c0 = x0 ∧ x1, c1 = x2, and c2 = x1 ∧ x3, the numbers
of minterms covered by c0, c1, c2, c0 ∧ c1, c0 ∧ c2, c1 ∧ c2, and
c0 ∧ c1 ∧ c2 are 4, 8, 4, 2, 2, 2, and 1, respectively. We refer to this
set of numbers as an intersection pattern.

Given a set of cubes, it is trivial to get its intersection pattern.
However, it is nontrivial to answer the reverse problem: given a set
of numbers that corresponds to an intersection pattern of λ cubes,
how can one synthesize a set of λ cubes to satisfy the given in-
tersection pattern, or prove that there is no solution to the given
intersection pattern? We will call this the λ-cube intersection prob-
lem. It is what we intend to solve in this paper. We are interested
in this problem since it is part of our broader effort to develop a
synthesis methodology for probabilistic computation [3].

Definition 1
Define V (f) to be the number of minterms contained in a Boolean
function f . �
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Example 1
In a 3-cube intersection problem on 4 variables x0, . . . , x3, if we
are given the intersection pattern as

V (c0) = 4, V (c1) = 8, V (c2) = 4,

V (c0 ∧ c1) = 2, V (c0 ∧ c2) = 2, V (c1 ∧ c2) = 2,

V (c0 ∧ c1 ∧ c2) = 1,

we can synthesize a set of cubes c0 = x0 ∧ x1, c1 = x2, and
c2 = x1 ∧ x3 to satisfy the intersection pattern. �

2. PRELIMINARIES
In this section, we will first introduce some basic definitions and

then give a formal definition of the λ-cube intersection problem.
Some of the basic definitions are adopted from [4].

The set of n variables of a Boolean function is denoted as
x0, . . . , xn−1. For a variable x, x and x̄ are referred to as literals.
A Boolean product, or product, is a conjunction of literals such
that x and x̄ do not appear simultaneously. A minterm is a Boolean
product in which each of the n variables appear once, in either its
complemented or uncomplemented form.

In the geometrical interpretation, a Boolean product is also known
as a cube, denoted by c, and a minterm is also referred to as a ver-
tex of the entire Boolean space. If cube c2 takes the value one
whenever cube c1 equals one, we say that cube c1 implies cube c2
and write as c1 ⊆ c2. If cube c1 implies cube c2, then we have
V (c1) ≤ V (c2). If c1 ∧ c2 = 0, we say that cube c1 and c2 are
disjoint.

If a cube c contains k literals (0 ≤ k ≤ n), then the number of
vertices contained in the cube is V (c) = 2n−k. Note that when a
cube contains 0 literals, it is a special cube c = 1, which contains
all vertices in the entire Boolean space. There is another special
cube called empty cube, which is c = 0. The number of vertices
contained in an empty cube is V (c) = 0. Thus, the number of
vertices contained in a cube is in the set S = {s|s = 0 or s =
2k, k = 0, 1, . . . , n}.

To make the representation compact, we use the following defi-
nitions.

Definition 2
Given a cube c and γ ∈ {0, 1}, define

cγ =

{
1, if γ = 0

c, if γ = 1

Given a set of λ cubes c0, . . . , cλ−1 and an integer Γ =
∑λ−1
i=0 γi2

i,
where γi ∈ {0, 1}, define CΓ to be the intersection of a subset of
cubes ci with γi = 1, i.e., CΓ =

∧λ−1
i=0 c

γi
i . �

Definition 3
Given an integer Γ =

∑λ−1
i=0 γi2

i, where γi ∈ {0, 1}, define B(Γ)
to be the number of ones in the binary representation of Γ, i.e.,
B(Γ) =

∑λ−1
i=0 γi. �

With the above definition, we can more formally define the λ-
cube intersection problem as follows:



Given n > 0, λ > 0, and 2λ− 1 numbers v1, v2, . . . v2λ−1 ∈ S =

{s|s = 0 or s = 2k, k = 0, 1, . . . , n}, determine whether there
exists a set of λ cubes c0, . . . , cλ−1 on n variables x0, . . . , xn−1,
such that for any 1 ≤ Γ ≤ 2λ − 1, V (CΓ) = vΓ.

We refer to the vector of numbers (v1, . . . , v2λ−1) as an inter-
section pattern on λ cubes, or simply as an intersection pattern.
If a set of λ cubes c0, . . . , cλ−1 satisfies the property that for any
1 ≤ Γ ≤ 2λ − 1, V (CΓ) = vΓ, then we say that the set of cubes
satisfies the intersection pattern (v1, . . . , v2λ−1).

For convenience, we represent a cube as a cube-variable row
vector and a set of cubes as a cube-variable matrix. These are
defined as follows.

Definition 4
Given a nonempty cube c on n variables x0, . . . , xn−1, we repre-
sent it by a cube-variable row vectorU of length n, whose elements
are from the set {0, 1, ∗}. If the j-th (0 ≤ j ≤ n − 1) element
Uj = 1, then the literal xj appears in the cube c; if Uj = 0, then
the literal x̄j appears in the cube c; if Uj = ∗, then the cube c does
not depend on the variable xj .

Given a set of λ nonempty cubes c0, . . . , cλ−1 on n variables
x0, . . . , xn−1, we represent them by a cube-variable matrix D of
size λ × n, so that the i-th row of the matrix is the cube-variable
row vector of ci. �

For example, a set of two cubes c0 = x0 ∧ x̄1 and c1 = x̄0 ∧ x2

is represented as a cube-variable matrix[
1 0 ∗
0 ∗ 1

]
Given a cube-variable row vector, the following simple lemma

suggests how to obtain the number of vertices covered by the cor-
responding cube.

Lemma 1
If the cube-variable row vector of a nonempty cube contains k ∗’s,
then the cube covers 2k number of vertices. �

Definition 5
For a value a in {0, 1, ∗}, the negation of a is defined as

ā =


1, if a = 0

0, if a = 1

∗, if a = ∗

The negation of a cube-variable matrix (column vector) is the element-
wise negation of the matrix (column vector). �

In what follows, we will say that a cube-variable matrix satis-
fies the given intersection pattern if the corresponding set of cubes
satisfies the intersection pattern. The following lemma is straight-
forward.

Lemma 2
Suppose that a cube-variable matrixD satisfies the intersection pat-
tern (v1, . . . , v2λ−1). Then D′ satisfies the same intersection pat-
tern if D′ is obtained from D by column permutation or column
negation. �

3. A SPECIAL CASE OF THE λ-CUBE
INTERSECTION PROBLEM

Here we consider a specific case in which v2λ−1 > 0. First, we
have the following theorem, which gives a necessary condition for
λ cubes to satisfy the given intersection pattern.

Theorem 1
If v2λ−1 > 0 and there exist λ cubes to satisfy the λ-cube intersec-
tion problem, then for any 1 ≤ Γ ≤ 2λ − 1, vΓ can be represented
as vΓ = 2kΓ , where 0 ≤ kΓ ≤ n is an integer. �

PROOF. Based on Definition 2, for any 1 ≤ Γ ≤ 2λ − 1,
C2λ−1 ⊆ CΓ. Therefore,

0 < v2λ−1 = V (C2λ−1) ≤ V (CΓ) = vΓ.

Since for any 1 ≤ Γ ≤ 2λ − 1, vΓ ∈ S and vΓ > 0, therefore,
there exists an integer 0 ≤ kΓ ≤ n, such that vΓ = 2kΓ .

In what follows, we will assume that there exist λ cubes to satisfy
the given intersection pattern. Then, there exist 2λ − 1 integers
k1, . . . , k2λ−1 such that for any 1 ≤ Γ ≤ 2λ − 1, vΓ = 2kΓ .
Further, notice that V (C0) = 2n. We let v0 = 2n and k0 = n.

Without loss of generality, we could assume that each entry of
the cube-variable matrix is either 1 or ∗. Since

∧λ−1
i=0 ci 6= 0, then

for each column of the matrixD, it does not simultaneously contain
both a 0 and a 1. Otherwise,

∧λ−1
i=0 ci = 0. Therefore, each column

of the matrix D contains either only 0’s and ∗’s or only 1’s and
∗’s. By Lemma 2, if we negate those columns of the matrix D
that contain only 0’s and ∗’s, then the new matrix D′ obtained still
satisfies the given intersection pattern. The matrixD′ only contains
1’s and ∗’s.

Definition 6
Given any 0 ≤ Γ ≤ 2λ − 1, suppose that Γ =

∑λ−1
i=0 γi2

i, where
γi ∈ {0, 1}. Define ψΓ to be a column vector of length λ with
elements from the set {1, ∗}, such that the i-th element (0 ≤ i ≤
λ− 1) of it is

(ψΓ)i =

{
1, if γi = 0

∗, if γi = 1
�

For example, if λ = 3, thenψ0 = (1, 1, 1)T andψ5 = (∗, 1, ∗)T .
Since each column of the cube-variable matrix only contains 1’s
and ∗’s, each column D·j is in the set {ψ0, ψ1, . . . , ψ2λ−1}.

Definition 7
For any 0 ≤ Γ ≤ 2λ − 1, define JΓ to be the set of indices of the
columns in the matrixD of the form ψΓ, i.e., JΓ = {j|D·j = ψΓ}.
Define zΓ to be the cardinality of the set JΓ. �

Definition 8
Given two integersA andB, let their binary representation beA =∑k−1
i=0 ai2

i and B =
∑k−1
i=0 bi2

i, where ai, bi ∈ {0, 1}. We write
A � B when for any 0 ≤ i ≤ k − 1, ai ≥ bi. �

The following theorem gives relation between {z0, . . . z2λ−1}
and {k0, . . . , k2λ−1}.

Theorem 2
For any 0 ≤ L ≤ 2λ − 1, we have

kL =
∑

0≤Γ≤2λ−1:Γ�L

zΓ. (1)

�

PROOF. Since the total number of columns in matrix D is n,
we have

∑2λ−1
Γ=0 zΓ = n = k0, or

∑
0≤Γ≤2λ−1:Γ�0

zΓ = k0. Thus,

Equation (1) holds for L = 0.
Now consider 1 ≤ L ≤ 2λ − 1. Then L can be represented as

L =
∑r−1
j=0 2lj , where 1 ≤ r ≤ λ and 0 ≤ l0 < · · · < lr−1 ≤

λ − 1. Then, CL represents the intersection of the set of cubes
cl0 , . . . , clr−1 . The i-th entry in the cube-variable row vector of
their intersection CL is ∗ if and only if the column D·i has ∗’s
on the row l0, l1, . . . , lr−1. Therefore, the number of ∗’s in the
cube-variable row vector of their intersection CL is the number of



columns in D, whose entries on the row l0, l1, . . . , lr−1 are all ∗’s,
or ∑

0≤Γ≤2λ−1:
(ψΓ)l0=···=(ψΓ)lr−1=∗

zΓ.

On the other hand,by Lemma 1, since V (CL) = 2kL , the num-
ber of ∗’s in the cube-variable row vector of CL is kL. Therefore,
we have

kL =
∑

0≤Γ≤2λ−1:
(ψΓ)l0=···=(ψΓ)lr−1=∗

zΓ =
∑

0≤Γ≤2λ−1:
γl0=···=γlr−1=1

zΓ, (2)

where L =
∑r−1
j=0 2lj and Γ =

∑λ−1
i=0 γi2

i.
By Definition 8, we can rewrite Equation (2) as

kL =
∑

0≤Γ≤2λ−1:Γ�L

zΓ.

Note that Equation (1) is a linear equation in z0, . . . , z2λ−1 and
holds for all 0 ≤ L ≤ 2λ − 1. Therefore, we can derive a system
of 2λ linear equations on unknowns z0, . . . , z2λ−1:∑

0≤Γ≤2λ−1:Γ�L

zΓ = kL, for L = 0, 1, . . . , 2λ − 1. (3)

We can represent the above system of linear equations in matrix
form, as shown by the following theorem.

Theorem 3
Let vector~k = (k0, . . . , k2λ−1)T and vector ~z = (z0, . . . , z2λ−1)T .
Then we can represent the system of 2λ linear equations (3) in ma-
trix form as

Rλ~z = ~k, (4)

whereRλ is a 2λ×2λ square matrix recursively defined as follows:

R1 =

[
1 1
0 1

]
, Ri =

[
Ri−1 Ri−1

0 Ri−1

]
, for i = 2, . . . , λ. �

Due to space constraints, we omit the proof.
It is not hard to see that det(Rλ) = 1. Therefore, Rλ is invert-

ible. The following theorem shows what R−1
λ is.

Theorem 4
R−1
λ is recursively defined as follows:

R−1
1 =

[
1 −1
0 1

]
, R−1

i =

[
R−1
i−1 −R−1

i−1

0 R−1
i−1

]
, for i = 2, . . . , λ. �

Therefore, given k0, k1, . . . , k2λ−1, we can get z0, z1, . . . , z2λ−1

as ~z = R−1
λ
~k.

Since for any 0 ≤ Γ ≤ 2λ−1, zΓ is the cardinality of the set JΓ,
therefore, zΓ must be a non-negative integer. By Theorem 4, R−1

λ
is an integer matrix. Therefore, z0, . . . , z2λ−1 are always integers.
Thus, a necessary condition for the existence of λ cubes to satisfy
the given intersection pattern is that the vectorR−1

λ
~k has all entries

non-negative. From Equation (4), we can see that the intersection
pattern (2k1 , . . . , 2

k2λ−1) only depends on z0, . . . , z2λ−1. There-
fore, as long as the vector R−1

λ
~k has all entries non-negative, there

exist λ cubes to satisfy the given intersection pattern. In fact, we
can construct λ cubes with their cube-variable matrix as follows:
for any column 0 ≤ j ≤ n−1 ofD, we can find a 0 ≤ Γ ≤ 2λ−1

such that
∑Γ−1
i=0 zi ≤ j ≤

∑Γ
i=0 zi − 1. Then, we let D·j = ψΓ.

In summary, we have the following corollary.

Corollary 1
The necessary and sufficient condition for the existence of λ cubes
to satisfy the given intersection pattern (2k1 , . . . , 2

k2λ−1) is that
the vector R−1

λ
~k has all entries non-negative, where

~k = (n, k1, . . . , k2λ−1)T and R−1
λ is defined in Theorem 4. �

Example 2
Given v1 = 4, v2 = 4, and v3 = 1, determine whether there exists
a set of 2 cubes c0 and c1 on 4 variables to satisfy the intersection
pattern (v1, v2, v3).
Solution: From the given conditions, we have ~k = (4, 2, 2, 0)T .
Since

R−1
2 =

1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

 ,
then by Equation (4), we get ~z = (0, 2, 2, 0)T . Therefore, there
are two ψ1’s and two ψ2’s in the cube-variable matrix of c0 and c1.
One realization of the cube-variable matrix is[

∗ ∗ 1 1
1 1 ∗ ∗

]
and the corresponding cubes are c0 = x2 ∧ x3 and c1 = x0 ∧ x1.
�

4. GENERAL λ-CUBE INTERSECTION
PROBLEM

In this section, we consider the more general situation where
v2λ−1 ≥ 0. Since we consider a set of nonempty cubes c0, . . . , cλ−1,
we assume that for any 0 ≤ i ≤ λ− 1, v2i = V (ci) > 0. Further,
notice that V (C0) = 2n. We let v0 = 2n.

4.1 Necessary Conditions on the Positive vΓ’s
We first have the following theorem applicable for numbers vΓ >

0.

Theorem 5
If there exist λ cubes c0, . . . , cλ−1 to satisfy the intersection pat-
tern, then for any 1 ≤ L ≤ 2λ − 1 such that vL > 0, we have that
for any 1 ≤ Γ ≤ 2λ − 1 such that L � Γ, vΓ > 0. �

PROOF. For any 1 ≤ Γ ≤ 2λ−1 such that L � Γ, it is not hard
to see that CL ⊆ CΓ. Therefore,

0 < vL = V (CL) ≤ V (CΓ) = vΓ.

If a set of cubes is pairwise non-disjoint, then it has the following
property.

Lemma 3
If a set of r cubes cl0 , . . . , clr−1 (3 ≤ r ≤ λ, 0 ≤ l0 < · · · <
lr−1 ≤ λ − 1) is pairwise non-disjoint, i.e., for any 0 ≤ i < j ≤
r − 1, cli ∧ clj 6= 0, then their intersection

∧r−1
i=0 cli is nonempty.

�

PROOF. By contraposition, suppose that
∧r−1
i=0 cli = 0. Con-

sider the cube-variable matrix on these r cubes. Since their inter-
section is empty, there exists a column in the matrix that contains
both a 0 and a 1. The cube corresponding to the 0 entry and the
cube corresponding to the 1 entry are disjoint. This contradicts the
assumption that the given set of cubes is pairwise non-disjoint.

Alternatively, Lemma 3 can be stated on the numbers vΓ. This
gives a necessary condition for the existence of a set of cubes to
satisfy the given intersection pattern.



Theorem 6
Suppose that there exist λ cubes c0, . . . , cλ−1 to satisfy the given
intersection pattern. If a set of r (3 ≤ r ≤ λ) numbers 0 ≤ l0 <
· · · < lr−1 ≤ λ − 1 satisfies that for any 0 ≤ i < j ≤ r − 1,
v

(2li+2
lj )

> 0, then for L =
∑r−1
i=0 2li , vL > 0. �

For example, suppose that in a 4-cube intersection problem we
are given v3 > 0, v9 > 0, and v10 > 0. If there exist 4 cubes to
satisfy the given intersection pattern, then since V (c0 ∧ c1) > 0,
V (c0 ∧ c3) > 0, and V (c1 ∧ c3) > 0, we must have v11 =
V (c0 ∧ c1 ∧ c3) > 0.

For the convenience, we first give the following definition.

Definition 9
Define

P = {Γ|0 ≤ Γ ≤ 2λ − 1 and vΓ > 0},

Z = {Γ|0 ≤ Γ ≤ 2λ − 1 and vΓ = 0}.

For any 0 ≤ i ≤ λ, define

Pi = {Γ|0 ≤ Γ ≤ 2λ − 1, B(Γ) = i, and vΓ > 0},

Zi = {Γ|0 ≤ Γ ≤ 2λ − 1, B(Γ) = i, and vΓ = 0}. �

From the definition of P and Z, we have the following obvious
lemma, which gives a necessary condition on the existence of λ
cubes to satisfy the given intersection pattern.

Lemma 4
If λ cubes c0, . . . , cλ−1 satisfy the given intersection pattern, then
for any Γ ∈ P , CΓ 6= 0 and for any Γ ∈ Z, CΓ = 0. �

However, by the following theorem, the above necessary condi-
tion could be reduced to the condition that for any Γ ∈ P2, CΓ 6= 0
and for any Γ ∈ Z2, CΓ = 0.

Theorem 7
Suppose that the given intersection pattern satisfies both Theorem 5
and 6:

1. For any 1 ≤ L ≤ 2λ − 1, if vL > 0, then for any 1 ≤ Γ ≤
2λ − 1 such that L � Γ, vΓ > 0.

2. For any set of r (3 ≤ r ≤ λ) numbers 0 ≤ l0 < · · · <
lr−1 ≤ λ− 1, if it satisfies that for any 0 ≤ i < j ≤ r − 1,
v

(2li+2
lj )

> 0, then for the number L =
∑r−1
i=0 2li , vL > 0.

Then, a necessary and sufficient condition for a set of λ nonempty
cubes to satisfy the condition that for any Γ ∈ P , CΓ 6= 0 and for
any Γ ∈ Z, CΓ = 0 is that for any Γ ∈ P2, CΓ 6= 0 and for any
Γ ∈ Z2, CΓ = 0. �

PROOF. The necessary part of the theorem is obvious, since the
set P2 is a subset of the set P and the set Z2 is a subset of the set
Z.

Now we prove the sufficient part. Suppose that a set of cubes
satisfies that for any Γ ∈ P2,CΓ 6= 0 and for any Γ ∈ Z2,CΓ = 0.

It is not hard to see that the sets P0, . . . , Pλ form a partition of
the set P and that the sets Z0, . . . , Zλ form a partition of the set
Z. Thus, we only need to prove that for all 0 ≤ k ≤ λ, the set of
cubes satisfies the condition that for any Γ ∈ Pk, CΓ 6= 0 and for
any Γ ∈ Zk, CΓ = 0.

We first consider the case that k = 0. By convention, v0 > 0.
Thus, P0 = {0} and Z0 = φ. Since C0 = 1, thus we have that for
any Γ ∈ P0, CΓ 6= 0. Since Z0 = φ, the statement that for any
Γ ∈ Z0, CΓ = 0 also holds.

Now we consider the case that k = 1. Since we assume that for
any 0 ≤ i ≤ λ−1, v2i > 0, therefore, P1 = {2i|i = 0, . . . , λ−1}
and Z1 = φ. Since c0, . . . , cλ−1 are all nonempty, thus we have
that for any Γ ∈ P1, CΓ 6= 0. Since Z1 = φ, the statement that for
any Γ ∈ Z1, CΓ = 0 also holds.

When k = 2, the statement that the set of cubes satisfies that for
any Γ ∈ P2, CΓ 6= 0 and for any Γ ∈ Z2, CΓ = 0 obviously
holds.

Now we consider the case that k ≥ 3. First, we consider any
L ∈ Pk. Suppose that L =

∑r−1
i=0 2li , where 3 ≤ r ≤ λ and

0 ≤ l0 < · · · < lr−1 ≤ λ− 1. Then, for any 0 ≤ i < j ≤ r − 1,
L � (2li + 2lj ). Therefore, based on the given condition, we have
v

(2li+2
lj )

> 0. Since B(2li + 2lj ) = 2, thus (2li + 2lj ) ∈ P2.

By the assumption that for any Γ ∈ P2, CΓ 6= 0, we have that
C(2li+2

lj ) = cli ∧ clj 6= 0. Thus, the r cubes cl0 , . . . , clr−1 are
pairwise non-disjoint. By Lemma 3, then CL =

∧r−1
i=0 cli 6= 0.

Therefore, for any L ∈ Pk, CL 6= 0.
Now we consider any L ∈ Zk. Suppose that L =

∑r−1
i=0 2li ,

where 3 ≤ r ≤ λ and 0 ≤ l0 < · · · < lr−1 ≤ λ − 1. We
argue that there exist two numbers 0 ≤ u < v ≤ r − 1, such
that v(2lu+2lv ) = 0. Otherwise, for any 0 ≤ i < j ≤ r − 1,
v

(2li+2
lj )

> 0. Then, based on the given conditions, we have
vL > 0. Therefore, it contradicts the assumption that L ∈ Zk.
Thus, there exist two numbers 0 ≤ u < v ≤ r − 1, such that
v(2lu+2lv ) = 0. Since B(2lu + 2lv ) = 2, thus (2lu + 2lv ) ∈
Z2. By the assumption that for any Γ ∈ Z2, CΓ = 0, we have
that C(2lu+2lv ) = clu ∧ clv = 0. Thus, CL =

∧r−1
i=0 cli = 0.

Therefore, for any L ∈ Zk, CL = 0.

For any Γ ∈ P , we assume vΓ = 2kΓ , where 0 ≤ kΓ ≤ n is an
integer. Since v0 = 2n, we let k0 = n. First, we give the following
definition.

Definition 10
Given a cube-variable matrix D on λ cubes c0, . . . , cλ−1, we de-
fine root cube-variable matrix t(D) of D as the cube-variable ma-
trix formed by replacing the 0 entries in D with 1’s and keeping
the other entries in D unchanged. The set of cubes c′0, . . . , c′λ−1

corresponding to the root matrix is called the set of root cubes to
the original set of cubes. �

For example, the root matrix of the cube-variable matrix[
1 0 ∗
0 ∗ 1

]
is

[
1 1 ∗
1 ∗ 1

]
.

The set of root cubes is c′0 = x0 ∧ x1 and c′1 = x0 ∧ x2.
Based on the definition of the set of root cubes, it is not hard to

prove the following lemma.

Lemma 5
Suppose that the set of root cubes to the set of original cubes
c0, . . . , cλ−1 is c′0, . . . , c′λ−1. Then, for any Γ ∈ P , we have
V (C′Γ) = V (CΓ). �

Since the root matrix t(D) is a matrix containing only 1’s and
∗’s, we can apply the definition of zΓ in Definition 7 to t(D). Then,
based on the fact that for any Γ ∈ P , V (C′Γ) = V (CΓ) = 2kΓ ,
it is not hard to show that the following theorem characterizing the
relation between zΓ’s and kL’s holds.

Theorem 8
If there exist λ cubes to satisfy the given intersection pattern, then
for any L ∈ P , ∑

0≤Γ≤2λ−1:Γ�L

zΓ = kL. �

4.2 A Necessary and Sufficient Condition
In this section, we will show a necessary and sufficient condition

for the existence of a set of cubes to satisfy the given intersection
pattern. As a byproduct, the proof provides a way of synthesizing
a set of cubes to satisfy the given intersection pattern. First, we
define the compatible column pattern set for a number Γ ∈ Z2.



Definition 11
Suppose that Γ ∈ Z2 and Γ = 2i + 2j , where 0 ≤ i < j ≤
λ−1. The compatible column pattern set for Γ is the set of column
vectors W of length λ with entries from the set {0, 1, ∗}, such that

1. Wi = 0 and Wj = 1 or Wi = 1 and Wj = 0,

2. for any number L ∈ P2 such that L = 2k + 2l, where 0 ≤
k < l ≤ λ − 1, the situation that Wk = 0 and Wl = 1 or
Wk = 1 and Wl = 0 does not happen. �

It is not hard to see that if a cube-variable column vector is in the
compatible column pattern set for a Γ ∈ Z2, then the negation of
that cube-variable column vector is also in that set. Therefore, we
define the representative compatible column pattern set as follows.

Definition 12
The representative compatible column pattern set ρΓ for Γ ∈ Z2

is a subset of the compatible column pattern set for Γ such that the
first non-∗ entry of each element in the representative set is 0. �

Example 3
Consider a 4-cube intersection problem with

P2 = {(0011)2, (0101)2, (1001)2},
Z2 = {(0110)2, (1010)2, (1100)2}.

The compatible column pattern set for Γ = (0110)2 ∈ Z2 is

{(∗010)T , (∗101)T , (∗011)T , (∗100)T , (∗01∗)T , (∗10∗)T }.

The representative compatible column pattern set for
Γ = (0110)2 is {(∗010)T , (∗011)T , (∗01∗)T }. �

Definition 13
We define the set Y as the union of the representative compatible
column pattern sets ρΓ for all Γ ∈ Z2, i.e., Y =

⋃
Γ∈Z2

ρΓ. We
define the set F as the union of the set Y and the set of patterns
contain only 1’s and ∗’s, i.e., F =

⋃2λ−1
i=0 {ψi} ∪ Y . �

Lemma 6
If there exists a cube-variable matrixD to satisfy the given intersec-
tion pattern, then there exists another matrixD′ which also satisfies
the given intersection pattern and each column of which is in the set
F . �

PROOF. First, we argue that for any column of D which con-
tains both a 0 and a 1 entry, the column is in the compatible column
pattern set of a certain Γ ∈ Z2. In fact, if a column r (0 ≤ r ≤
n − 1) of D has the i-th entry being 0 and the j-th entry being 1,
where 0 ≤ i, j ≤ λ− 1 and i 6= j, then it is not hard to show that
the column is in the compatible column pattern set for the number
(2i + 2j) ∈ Z2.

We can construct a D′ from D as follows. For any column 0 ≤
r ≤ λ− 1:

1. If D·r contains only 1’s and ∗’s, we let D′·r be D·r . Then
D′·r is in the set

⋃2λ−1
i=0 {ψi}.

2. If D·r contains only 0’s and ∗’s, we let D′·r be the negation
of the column D·r . Then D′·r is in the set

⋃2λ−1
i=0 {ψi}.

3. If D·r contains both a 0 and a 1 and the first non-∗ entry of
D·r is 0, we let D′·r be D·r . Then, there exists a Γ ∈ Z2

such that D′·r is in the set ρΓ.

4. If D·r contains both a 0 and a 1 and the first non-∗ entry
of D·r is 1, we let D′·r be the negation of the column D·r .
Then, there exists a Γ ∈ Z2 such that D′·r is in the set ρΓ.

Then, by the above construction, each column of D′ is in the set
F . Further, D′ is obtained from D by column negations. Thus, by
Lemma 2, D′ also satisfies the given intersection pattern.

Based on Lemma 6, we only need to answer whether there exists
a cube-variable matrix with columns from the set F to satisfy the
given intersection pattern.

Lemma 7
If a cube-variable matrix D with columns from the set F satisfies
the given intersection pattern, then for any Γ ∈ Z2, there exists a
column in D which is in the set ρΓ. �

PROOF. For any Γ ∈ Z2, suppose that Γ = 2i + 2j , where
0 ≤ i < j ≤ λ − 1. Since the cube-variable matrix satisfies the
given intersection pattern, then based on Lemma 4, for the Γ ∈ Z2,
we must have CΓ = 0 or ci ∧ cj = 0. Thus, there must exist a
column r in D, such that Dir = 0 and Djr = 1 or Dir = 1 and
Djr = 0. Now consider any L ∈ P2. Suppose that L = 2k + 2l,
where 0 ≤ k < l ≤ λ − 1. Since the necessary condition for the
cube-variable matrix to satisfy a given intersection pattern is that
for the L ∈ P2, CL 6= 0, the situation that Dkr = 0 and Dlr = 1
or Dkr = 1 and Dlr = 0 cannot happen. Therefore, the column r
of D is in the compatible column pattern set for Γ. Further, since
all the columns of D are in the set F , then column r must be in the
set ρΓ.

By the similar definition of root cube-variable matrix, we define
root column vector as follows.

Definition 14
Given a column vector W with each element in the set {0, 1, ∗},
define its root column vector t(W ) as the column vector obtained
from W by replacing the 0 entries in W with 1’s and keeping the
other entries in W unchanged. �

Definition 15
We define the setM to be the set of numbers 0 ≤ Γ ≤ 2λ−1 such
that there exists an element in the set Y , whose root column vector
is ψΓ, i.e.,

M = {Γ|0 ≤ Γ ≤ 2λ − 1, s.t. ∃W ∈ Y s.t. t(W ) = ψΓ}.

Define M as M = {Γ|0 ≤ Γ ≤ 2λ − 1,Γ 6∈M}.
For any Γ ∈ M , we define the set YΓ to be the set of elements

in the set Y such that their root column vectors are ψΓ, i.e., YΓ =
{W |W ∈ Y and t(W ) = ψΓ}. �

Example 4
For the intersection pattern shown in Example 3, we have Z2 =
{6, 10, 12} and

ρ6 = {(∗010)T , (∗011)T , (∗01∗)T },
ρ10 = {(∗001)T , (∗011)T , (∗0 ∗ 1)T },
ρ12 = {(∗010)T , (∗001)T , (∗ ∗ 01)T }.

Thus,

Y = {(∗010)T , (∗001)T , (∗011)T , (∗ ∗ 01)T , (∗0 ∗ 1)T , (∗01∗)T },
M = {1, 3, 5, 9},

and Y1 = {(∗010)T , (∗001)T , (∗011)T }, Y3 = {(∗∗01)T }, Y5 =
{(∗0 ∗ 1)T }, and Y9 = {(∗01∗)T }. �

Definition 16
For any Γ ∈M , we let the |YΓ| elements in the set YΓ be
δΓ,0, . . . , δΓ,|YΓ|−1. For any 0 ≤ i ≤ |YΓ| − 1, we define KΓ,i to
be the set of indices of the columns in the matrixD of the form δΓ,i,
i.e., KΓ,i = {k|D·k = δΓ,i}. We define wΓ,i to be the cardinality
of the set KΓ,i. �

Theorem 9
Suppose that there exists a cube-variable matrix D to satisfy the
given intersection pattern, whose columns are from the setF . Then,



we have that for any Γ ∈M ,

|YΓ|−1∑
i=0

wΓ,i ≤ zΓ, (5)

where zΓ’s are defined on the root matrix t(D) according to Defi-
nition 7 and wΓ,i’s are defined on the matrix D according to Defi-
nition 16. We also have that for any L ∈ Z2,∑

Γ∈M,0≤i≤|YΓ|−1:
δΓ,i∈ρL

wΓ,i ≥ 1. (6)

�

PROOF. Consider any Γ ∈M . For any number k ∈
⋃|YΓ|−1
i=0 KΓ,i,

the column vector D·k is in the set YΓ. Thus, the root column
vector of D·k is ψΓ. Thus, k ∈ JΓ, where JΓ is defined on the
root matrix t(D). Therefore,

⋃|YΓ|−1
i=0 KΓ,i ⊆ JΓ. As a result,∣∣∣⋃|YΓ|−1

i=0 KΓ,i

∣∣∣ ≤ |JΓ|, or
∑|YΓ|−1
i=0 wΓ,i ≤ zΓ.

By Lemma 7, for any L ∈ Z2, there exists a column in D which
is in the set ρL. Suppose that column is of the form δΓ∗,i∗ ∈ ρL,
where Γ∗ ∈M and 0 ≤ i ≤ |YΓ∗ | − 1. Thus,

1 ≤ wΓ∗,i∗ ≤
∑

Γ∈M,0≤i≤|YΓ|−1:
δΓ,i∈ρL

wΓ,i.

Example 5
For the intersection pattern given in Example 3, based on the result
shown in Example 4, we have

δ1,0 = (∗010)T , δ1,1 = (∗001)T , δ1,2 = (∗011)T ,

δ3,0 = (∗ ∗ 01)T , δ5,0 = (∗0 ∗ 1)T , δ9,0 = (∗01∗)T .

The set of equations (5) for all Γ ∈M in this example is{
wΓ,0 ≤ zΓ, for any Γ ∈ {3, 5, 9}
w1,0 + w1,1 + w1,2 ≤ z1

The set of equations (6) for all L ∈ Z2 in this example is
w1,0 + w1,2 + w9,0 ≥ 1

w1,1 + w1,2 + w5,0 ≥ 1

w1,0 + w1,1 + w3,0 ≥ 1

�

Finally, based on the necessary conditions for the existence of a
cube-variable matrix to satisfy the given intersection pattern, shown
in Theorem 5, 6, 8, and 9, we can derive a necessary and sufficient
condition.

Theorem 10
There exists a cube-variable matrix D to satisfy the given intersec-
tion pattern (v1, . . . , v2λ−1) if and only if

1. for any 1 ≤ L ≤ 2λ − 1, if vL > 0, then for any 1 ≤ Γ ≤
2λ − 1 such that L � Γ, vΓ > 0,

2. for any set of r (3 ≤ r ≤ λ) numbers 0 ≤ l0 < · · · <
lr−1 ≤ λ− 1, if it satisfies that for any 0 ≤ i < j ≤ r − 1,
v

(2li+2
lj )

> 0, then for the number L =
∑r−1
i=0 2li , vL > 0,

and

3. the system of equations on unknowns z̃Γ (for all 0 ≤ Γ ≤
2λ − 1) and w̃Γ,i (for all Γ ∈M and 0 ≤ i ≤ |YΓ| − 1)∑

0≤Γ≤2λ−1:Γ�L

z̃Γ = kL, for all L ∈ P

|YΓ|−1∑
i=0

w̃Γ,i ≤ z̃Γ, for all Γ ∈M∑
Γ∈M,0≤i≤|YΓ|−1:

δΓ,i∈ρL

w̃Γ,i ≥ 1, for all L ∈ Z2

(7)

has a non-negative integer solution. �

PROOF. “only if” part: Statement 1 in the theorem is due to
Theorem 5 and Statement 2 in the theorem is due to Theorem 6.

SinceD satisfies the given intersection pattern, then by Lemma 6,
there exists another matrix D′ which also satisfies the given inter-
section pattern and each column of which is in the set F . For any
0 ≤ Γ ≤ 2λ − 1, let z̃Γ = zΓ, where zΓ’s are defined on the
root matrix t(D′) according to Definition 7. For any Γ ∈ M and
0 ≤ i ≤ |YΓ|−1, let w̃Γ,i = wΓ,i, where wΓ,i’s are defined on the
matrix D′ according to Definition 16. By Theorem 8 and 9, the set
of numbers z̃Γ and w̃Γ,i satisfies the system of equations (7). Since
z̃Γ is the cardinality of the set JΓ and w̃Γ,i is the cardinality of the
set KΓ,i, therefore, z̃Γ’s and w̃Γ,i’s are all non-negative integers.
Thus, the system of equations (7) has a non-negative solution.

“if” part: Let a non-negative solution to the system of equa-
tions (7) be z̃Γ = zΓ, for all 0 ≤ Γ ≤ 2λ−1, and w̃Γ,i = wΓ,i, for
all Γ ∈ M and 0 ≤ i ≤ |YΓ| − 1. Since for all 0 ≤ Γ ≤ 2λ − 1,
zΓ ≥ 0, for all Γ ∈ M and 0 ≤ i ≤ |YΓ| − 1, wΓ,i ≥ 0, and for
all Γ ∈ M ,

∑|YΓ|−1
i=0 wΓ,i ≤ zΓ, then, we can construct a cube-

variable matrix D so that

1. for all Γ ∈ M , the matrix contains zΓ columns of the form
ψΓ,

2. for all Γ ∈ M , the matrix contains zΓ −
∑|YΓ|−1
i=0 wΓ,i

columns of the form ψΓ, and

3. for all Γ ∈M and all 0 ≤ i ≤ |YΓ| − 1, the matrix contains
wΓ,i columns of the form δΓ,i.

All columns of the matrix D are in the set F . Next, we prove that
the matrix D satisfies the given intersection pattern.

For anyL ∈ Z2, supposeL = 2i+2j , where 0 ≤ i < j ≤ λ−1.
Since

∑
Γ∈M,0≤k≤|YΓ|−1:

δΓ,k∈ρL

wΓ,k ≥ 1, there exists a Γ∗ ∈ M and a

0 ≤ k∗ ≤ |YΓ∗ | − 1, such that δΓ∗,k∗ ∈ ρL and wΓ∗,k∗ ≥ 1.
Therefore, the matrix D contains a column from the set ρL. Based
on the definition of ρL, CL = ci ∧ cj = 0. Thus, for any L ∈ Z2,
CL = 0.

Now consider anyL ∈ P2. SupposeL = 2i+2j , where 0 ≤ i <
j ≤ λ− 1. We argue that CL = ci ∧ cj 6= 0. Otherwise, ci ∧ cj =
0. Therefore, there exists a column r in D, such Dir = 0 and
Djr = 1 or Dir = 1 and Djr = 0. Since all the columns of D are
in the set F , thus the column D·r must be in the set Y . However,
based on the definition of representative compatible column pattern
set, each element W in the set Y satisfies that for the L ∈ P2, the
situation that Wi = 0 and Wj = 1 or Wi = 1 and Wj = 0
does not happen. Therefore, the columnD·r does not belong to the
set Y . We get a contradiction. Thus, for any L ∈ P2, we have
CL 6= 0.

Since the given intersection pattern satisfies the conditions of
Theorem 7, then, based on Theorem 7, we have that for any Γ ∈ Z,
CΓ = 0 and for any Γ ∈ P , CΓ 6= 0. Thus, for all these Γ ∈ Z,
V (CΓ) = vΓ = 0.

Now consider any L ∈ P . When L = 0, it is not hard to see that
the total number of columns in D is n.

For any L ∈ P and L > 0, L can be represented as L =∑r−1
j=0 2lj , where 1 ≤ r ≤ λ and 0 ≤ l0 < · · · < lr−1 ≤ λ − 1.



Since CL 6= 0, the number of ∗’s in the cube-variable row vec-
tor CL is the number of columns in D, whose entries on the row
l0, l1, . . . , lr−1 are all ∗’s. Note that for any 0 ≤ Γ ≤ 2λ − 1, the
column pattern ψΓ has all entries on the row l0, l1, . . . , lr−1 being
∗’s if and only if Γ � L. Since the root column vector of δΓ,i is
ψΓ, thus for any Γ ∈ M and any 0 ≤ i ≤ |YΓ| − 1, the column
pattern δΓ,i has all entries on the row l0, l1, . . . , lr−1 being ∗’s if
and only if Γ � L. Therefore, the number of columns in D, whose
entries on the row l0, l1, . . . , lr−1 are all ∗’s, is

∑
Γ∈M :
Γ�L

zΓ +
∑

Γ∈M :
Γ�L

zΓ −
|YΓ|−1∑
i=0

wΓ,i

+
∑

Γ∈M :
Γ�L

|YΓ|−1∑
i=0

wΓ,i

=
∑

0≤Γ≤2λ−1:Γ�L

zΓ = kL.

Therefore, the number of ∗’s in the row vector CL is kL. Since
CL 6= 0, by Lemma 1, V (CL) = 2kL . Thus, for any L ∈ P and
L > 0, V (CL) = 2kL = vL.

In summary, the matrix D has n columns and for any 1 ≤ Γ ≤
2λ − 1, V (CΓ) = vΓ. Thus, the matrix D satisfies the given
intersection pattern.

Comment: The above proof provides a way of synthesizing a cube-
variable matrix to satisfy the given intersection pattern when the
three conditions are all satisfied.

Example 6
In a 3-cube intersection problem on 4 variables x0, . . . , x3, sup-
pose that the intersection pattern is given as

v1 = 4, v2 = 4, v3 = 0, v4 = 4, v5 = 1, v6 = 2, v7 = 0.

First, it is not hard to check that both Statement 1 and Statement
2 in Theorem 10 hold for the given pattern.

By convention, v0 = 24 = 16. Therefore, we have

P = {0, 1, 2, 4, 5, 6}, Z = {3, 7},
k0 = 4, k1 = 2, k2 = 2, k4 = 2, k5 = 0, k6 = 1.

For the given intersection pattern, we have Z2 = {3} and ρ3 =
{(01∗)T }.

Thus, Y = {(01∗)T },M = {4} and Y4 = {(01∗)T }. Thus,
δ4,0 = (01∗)T .

The system of equations (7) in this example is

z̃0 + z̃1 + z̃2 + z̃3 + z̃3 + z̃4 + z̃6 + z̃7 = 4,

z̃1 + z̃3 + z̃5 + z̃7 = 2, z̃2 + z̃3 + z̃6 + z̃7 = 2,

z̃4 + z̃5 + z̃6 + z̃7 = 2, z̃5 + z̃7 = 0, z̃6 + z̃7 = 1.

w̃4,0 ≤ z̃4, w̃4,0 ≥ 1

(8)

The above system of equations (8) has a non-negative solution

z̃1 = z̃3 = z̃4 = z̃6 = 1, z̃0 = z̃2 = z̃5 = z̃7 = 0, w̃4,0 = 1.

Thus, Statement 3 in Theorem 10 also holds. Therefore, there
exists a cube-variable matrix to satisfy the given intersection pat-
tern. Based on the proof of Theorem 10, we can synthesize a cube-
variable matrix that satisfies the given intersection pattern based on
the above non-negative solution as[∗ ∗ 0 1

1 ∗ 1 ∗
1 1 ∗ ∗

]
and the corresponding cubes are c0 = x̄2 ∧ x3, c1 = x0 ∧ x2, and
c2 = x0 ∧ x1. It is not hard to verify that the set of cubes c0, c1, c2
satisfies the given intersection pattern. �

5. IMPLEMENTATION
In this section, we will discuss the implementation of the proce-

dure to solve the λ-cube intersection problem, based on the theories
in Section 4.

5.1 Checking Statement 1 in Theorem 10
For Statement 1 in Theorem 10, we can represent it in an alter-

native way, which is shown by the following theorem.

Theorem 11
The following two statements are equivalent:

1. The intersection pattern (v1, . . . , v2λ−1) satisfies that for any
1 ≤ L ≤ 2λ − 1, if vL > 0, then for any 1 ≤ Γ ≤ 2λ − 1
such that L � Γ, vΓ > 0.

2. The intersection pattern (v1, . . . , v2λ−1) satisfies that for any
2 ≤ k ≤ λ and any L ∈ Pk, if 1 ≤ Γ ≤ 2λ− 1 satisfies that
B(Γ) = k − 1 and L � Γ, then vΓ > 0. �

Based on Theorem 11, in order to check whether Statement 1
in Theorem 10 holds, we only need to check whether Statement 2
in Theorem 11 holds. Thus, whether Statement 1 in Theorem 10
holds can be checked by the procedure shown in Algorithm 1.

Algorithm 1 CheckRuleOne(λ, v): the procedure to check whether State-
ment 1 in Theorem 10 holds. It returns 1 if the statement holds; otherwise,
it returns 0.

1: {Given an integer λ ≥ 1 and a non-negative integer array v =
(v1, . . . , v2λ−1).}

2: for i⇐ 1 to λ do
3: Pi ⇐ {Γ|0 ≤ Γ ≤ 2λ − 1, B(Γ) = i, and vΓ > 0};
4: for i⇐ 2 to λ do
5: for all L ∈ Pi do
6: for all 1 ≤ Γ ≤ 2λ − 1 s.t. L � Γ and B(Γ) = i− 1 do
7: if vΓ = 0 then return 0;
8: return 1;

5.2 Checking Statement 2 in Theorem 10
Whether Statement 2 in Theorem 10 holds can be checked by

representing the given intersection pattern by an undirected graph
and listing all maximal cliques of the undirected graph.

For a given intersection pattern on λ cubes, we can construct an
undirected graph G(N,E) from that pattern, where N is a set of
λ nodes n0, . . . , nλ−1 and E is a set of edges. There is an edge
between the node ni and nj (0 ≤ i < j ≤ λ− 1) if and only if the
number (2i + 2j) is in the set P2.

For example, we can represent the intersection pattern shown in
Example 3 by the undirected graph shown in Figure 1.

n0

n1

n2

n3

Figure 1: An undirected graph constructed from the intersection pattern of
Example 3.

In graph theory, a clique in an undirected graph G(N,E) is de-
fined as a subsetQ of the node setN , such that for every two nodes
in Q, there exists an edge connecting the two. A maximal clique
is a clique that cannot be extended by including one more adjacent
node.

For an intersection pattern, if a set of r (3 ≤ r ≤ λ) numbers
0 ≤ l0 < · · · < lr−1 ≤ λ − 1 satisfies that for any 0 ≤ i < j ≤
r − 1, v

(2li+2
lj )

> 0, then, the set of nodes nl0 , . . . , nlr−1 forms
a clique of the undirected graph constructed from the intersection
pattern. Thus, Statement 2 in Theorem 10 can be stated in another
way as: For any clique Q = {nl0 , . . . , nlr−1} of size r in the
undirected graph constructed from the intersection pattern, where
3 ≤ r ≤ λ and 0 ≤ l0 < · · · < lr−1 ≤ λ−1, the number vL > 0,
where L =

∑r−1
i=0 2li . In fact, it is not hard to see that if Statement

1 in Theorem 10 holds, then Statement 2 in Theorem 10 holds if
and only if for any maximal cliqueQ∗ = {nd0 , . . . , ndt−1} of size
t in the undirected graph constructed from the intersection pattern,



Algorithm 2 CheckRuleTwo(λ, v): the procedure to check whether
Statement 2 in Theorem 10 holds under the assumption that Statement 1
in Theorem 10 holds. It returns 1 if the statement holds; otherwise, it re-
turns 0.

1: {Given an integer λ ≥ 1 and a non-negative integer array v =
(v1, . . . , v2λ−1).}

2: N ⇐ {n0, . . . , nλ−1}; E ⇐ φ;
3: for i⇐ 0 to λ− 1 do
4: for j ⇐ i+ 1 to λ− 1 do
5: if v(2i+2j) > 0 then E ⇐ E ∪ {e(ni, nj)};
6: for all maximal clique Q in the graph G(N,E) do
7: L⇐

∑
i:ni∈Q 2i;

8: if vL = 0 then return 0;
9: return 1;

where 3 ≤ t ≤ λ and 0 ≤ d0 < · · · < dt−1 ≤ λ− 1, the number
vL∗ > 0, where L∗ =

∑t−1
i=0 2di . Therefore, whether Statement

2 in Theorem 10 holds can be answered by checking whether all
vL’s corresponding to all maximal cliques in the undirected graph
G(N,E) are greater than zero. The problem of listing all maxi-
mal cliques in an undirected graph is a classical problem in graph
theory and can be solved, for example, by the Born-Kerbosch algo-
rithm [5].

Assuming that Statement 1 in Theorem 10 holds, then whether
Statement 2 in Theorem 10 holds can be checked by the procedure
shown in Algorithm 2.

5.3 Checking Statement 3 in Theorem 10
The following theorem shows that to check whether the system

of equations (7) has a non-negative solution, we only need to check
whether an alternative system of equations with fewer unknowns
has a non-negative solution.

Theorem 12
The system of equations (7) has a non-negative integer solution if
and only if the system of equations on unknowns ẑΓ (for all Γ ∈
M) and ŵΓ,i (for all Γ ∈M and 0 ≤ i ≤ |YΓ| − 1)

∑
Γ∈M,Γ�L

ẑΓ +
∑

Γ∈M,Γ�L

|YΓ|−1∑
i=0

ŵΓ,i = kL, for all L ∈ P

∑
Γ∈M,0≤i≤|YΓ|−1:

δΓ,i∈ρL

ŵΓ,i ≥ 1, for all L ∈ Z2

(9)

has a non-negative integer solution. �

Due to space constraints, we omit the proof here.
Based on Theorem 12, to check whether Statement 3 in Theo-

rem 10 holds, we only need to check whether the system of equa-
tions (9) has a non-negative solution. Note that the system of equa-
tions (9) has |M | fewer unknowns and |M | fewer inequalities than
the original system of equations (7). Thus, a certain amount of
computation will be saved.

5.4 The Procedure to Solve the λ-Cube
Intersection Problem

Based on the above discussion, we give the procedure to solve
the λ-cube intersection problem in Algorithm 3. In the procedure,
the function CheckRuleOne(λ, v) and the function
CheckRuleTwo(λ, v) are shown in Algorithm 1 and 2, respectively.
The function RCCPS(Γ, λ, P2) returns the representative compati-
ble column pattern set for a Γ ∈ Z2. The function

SetEqn(P,Z2,M,M, {kL|L ∈ P}, {ρL|L ∈ Z2}, {YL|L ∈M})

returns the matrices Aze, Awe, Aw and the column vectors be and
b in the matrix representation of the system of equations (9), which
is {

Aze~z +Awe ~w = be,

Aw ~w ≥ b,
(10)

where ~z is a column vector of unknowns ẑΓ, for all Γ ∈ M , and
~w is a column vector of unknowns ŵΓ,i, for all Γ ∈ M and 0 ≤
i ≤ |YΓ|−1. The function NonNegSln(Aze, Awe, be, Aw, b) finds
a non-negative integer solution to the system of equations (10). If
the system of equations (10) has a non-negative integer solution,
then the function returns one; otherwise, it returns φ. Given a
non-negative solution (~z, ~w) to the system of equations (10), the
function SynCubes(~z, ~w, λ) synthesizes a set of λ cubes from that
solution based on the proof of Theorem 10.

Algorithm 3 CubePattern(n, λ, v): the procedure to check whether there
exists a set of λ cubes on n variables to satisfy the given intersection pattern
v = (v1, . . . , v2λ−1). If the answer is yes, the procedure returns a set of
cubes that satisfies the intersection pattern; otherwise, it returns φ.

1: {Given integers n ≥ 1, λ ≥ 1, and a non-negative integer array v =
(v1, . . . , v2λ−1), where vΓ ∈ {0, 20, 21, . . . 2n}.}

2: P ⇐ φ; Z ⇐ φ;
3: for i⇐ 1 to 2λ − 1 do
4: if vΓ > 0 then P ⇐ P ∪ {Γ}; kΓ ⇐ log2 vΓ;
5: else Z ⇐ Z ∪ {Γ};
6: if CheckRuleOne(λ, v) = 0 then return φ;
7: if CheckRuleTwo(λ, v) = 0 then return φ;
8: P2 ⇐ {Γ|0 ≤ Γ ≤ 2λ − 1, B(Γ) = 2, and vΓ > 0};
9: Z2 ⇐ {Γ|0 ≤ Γ ≤ 2λ − 1, B(Γ) = 2, and vΓ = 0};

10: for all Γ ∈ Z2 do ρΓ = RCCPS(Γ, λ, P2);
11: Y ⇐

⋃
Γ∈Z2

ρΓ;
12: M ⇐ {Γ|0 ≤ Γ ≤ 2λ − 1, s.t. ∃W ∈ Y s.t. t(W ) = ψΓ};
13: M ⇐ {Γ|0 ≤ Γ ≤ 2λ − 1,Γ 6∈M};
14: for all Γ ∈M do YΓ ⇐ {W |W ∈ Y and t(W ) = ψΓ};
15: (Aze, Awe, be, Aw, b)⇐ SetEqn(P,Z2,M,M,

{kL|L ∈ P}, {ρL|L ∈ Z2}, {YL|L ∈M});
16: (~z, ~w)⇐ NonNegSln(Aze, Awe, be, Aw, b);
17: if (~z, ~w) = φ then return φ;
18: return SynCubes(~z, ~w, λ);

6. CONCLUSION
In this paper, we introduced a new problem, the λ-cube inter-

section problem: Given a set of numbers corresponding to an in-
tersection pattern of a set of λ cubes, we are asked to synthesize a
set of cubes to satisfy the given intersection pattern, or prove that
there is no such a solution to the problem. We provide a rigorous
mathematic treatment to this problem and derive a necessary and
sufficient condition for the existence of a set of cubes to satisfy
the given intersection pattern. The problem reduces to two sub-
problems of listing all maximal cliques in an undirected graph and
checking whether a set of linear equalities and inequalities has a
non-negative integer solution. As a future work, we will use the
algorithm presented to solve the λ-cube intersection problem as a
subroutine to solve our more broader problem of synthesizing com-
binational logic for probabilistic computation.
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