Synthesizing a Set of Cubes to Satisfy a Given Intersection Pattern

Weikang Qian and Marc D. Riedel Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities
\{qianx030, mriedel\}@umn.edu

Abstract

In two-level logic synthesis, the typical input specification is a set of minterms defining the on set and a set of minterms defining the don't care set of a Boolean function. The problem is to synthesize an optimal set of product terms, or cubes, that covers all the minterms in the on set and some of the minterms in the don't care set. In this paper, we consider a different specification: instead of the on set and the don't care set, we are given a set of numbers, each of which specifies the number of minterms covered by the intersection of one of the subsets of a set of λ cubes. We refer to the given set of numbers as an intersection pattern. The problem is to deterimine whether there exists a set of λ cubes to satisfy the given intersection pattern and, if it exists, to synthesize the set of cubes. We show a necessary and sufficient condition for the existence of λ cubes to satisfy a given intersection pattern. We also show that the synthesis problem can be reduced to the problem of finding a non-negative solution to a set of linear equalities and inequalities.

1. INTRODUCTION

Two-level logic synthesis is a well-developed and mature topic [1, 2]. The typical input specification for a two-level synthesis problem is the on set and the don't care set (or in some cases, the off set) of a Boolean function. The on set and the don't care set consist of minterms that define when the function evaluates to one and when its evaluation can be either zero or one, respectively. The problem is to synthesize an optimal set of product terms, or cubes, that covers all the minterms in the on set and some of the minterms in the don't care set.
In this work, we consider a related yet different problem pertaining to the synthesis of a set of cubes. A set of cubes, besides defining a Boolean function, also defines a set of numbers, each of which corresponds to the number of minterms covered by the intersection of one of the subsets of the set of cubes. For example, given a set of three cubes on four variables $x_{0}, x_{1}, x_{2}, x_{3}$, which are $c_{0}=x_{0} \wedge x_{1}, c_{1}=x_{2}$, and $c_{2}=x_{1} \wedge x_{3}$, the numbers of minterms covered by $c_{0}, c_{1}, c_{2}, c_{0} \wedge c_{1}, c_{0} \wedge c_{2}, c_{1} \wedge c_{2}$, and $c_{0} \wedge c_{1} \wedge c_{2}$ are $4,8,4,2,2,2$, and 1 , respectively. We refer to this set of numbers as an intersection pattern.

Given a set of cubes, it is trivial to get its intersection pattern. However, it is nontrivial to answer the reverse problem: given a set of numbers that corresponds to an intersection pattern of λ cubes, how can one synthesize a set of λ cubes to satisfy the given intersection pattern, or prove that there is no solution to the given intersection pattern? We will call this the λ-cube intersection problem. It is what we intend to solve in this paper. We are interested in this problem since it is part of our broader effort to develop a synthesis methodology for probabilistic computation [3].

Definition 1

Define $V(f)$ to be the number of minterms contained in a Boolean function $f . \square$

[^0]
Example 1

In a 3 -cube intersection problem on 4 variables x_{0}, \ldots, x_{3}, if we are given the intersection pattern as

$$
\begin{aligned}
& V\left(c_{0}\right)=4, V\left(c_{1}\right)=8, V\left(c_{2}\right)=4 \\
& V\left(c_{0} \wedge c_{1}\right)=2, V\left(c_{0} \wedge c_{2}\right)=2, V\left(c_{1} \wedge c_{2}\right)=2 \\
& V\left(c_{0} \wedge c_{1} \wedge c_{2}\right)=1
\end{aligned}
$$

we can synthesize a set of cubes $c_{0}=x_{0} \wedge x_{1}, c_{1}=x_{2}$, and $c_{2}=x_{1} \wedge x_{3}$ to satisfy the intersection pattern. \square

2. PRELIMINARIES

In this section, we will first introduce some basic definitions and then give a formal definition of the λ-cube intersection problem. Some of the basic definitions are adopted from [4].

The set of n variables of a Boolean function is denoted as x_{0}, \ldots, x_{n-1}. For a variable x, x and \bar{x} are referred to as literals. A Boolean product, or product, is a conjunction of literals such that x and \bar{x} do not appear simultaneously. A minterm is a Boolean product in which each of the n variables appear once, in either its complemented or uncomplemented form.

In the geometrical interpretation, a Boolean product is also known as a cube, denoted by c, and a minterm is also referred to as a vertex of the entire Boolean space. If cube c_{2} takes the value one whenever cube c_{1} equals one, we say that cube c_{1} implies cube c_{2} and write as $c_{1} \subseteq c_{2}$. If cube c_{1} implies cube c_{2}, then we have $V\left(c_{1}\right) \leq V\left(c_{2}\right)$. If $c_{1} \wedge c_{2}=0$, we say that cube c_{1} and c_{2} are disjoint.

If a cube c contains k literals $(0 \leq k \leq n)$, then the number of vertices contained in the cube is $V(c)=2^{n-k}$. Note that when a cube contains 0 literals, it is a special cube $c=1$, which contains all vertices in the entire Boolean space. There is another special cube called empty cube, which is $c=0$. The number of vertices contained in an empty cube is $V(c)=0$. Thus, the number of vertices contained in a cube is in the set $S=\{s \mid s=0$ or $s=$ $\left.2^{k}, k=0,1, \ldots, n\right\}$.

To make the representation compact, we use the following definitions.

Definition 2

Given a cube c and $\gamma \in\{0,1\}$, define

$$
c^{\gamma}= \begin{cases}1, & \text { if } \gamma=0 \\ c, & \text { if } \gamma=1\end{cases}
$$

Given a set of λ cubes $c_{0}, \ldots, c_{\lambda-1}$ and an integer $\Gamma=\sum_{i=0}^{\lambda-1} \gamma_{i} 2^{i}$, where $\gamma_{i} \in\{0,1\}$, define C^{Γ} to be the intersection of a subset of cubes c_{i} with $\gamma_{i}=1$, i.e., $C^{\Gamma}=\bigwedge_{i=0}^{\lambda-1} c_{i}^{\gamma_{i}}$.

Definition 3

Given an integer $\Gamma=\sum_{i=0}^{\lambda-1} \gamma_{i} 2^{i}$, where $\gamma_{i} \in\{0,1\}$, define $B(\Gamma)$ to be the number of ones in the binary representation of Γ, i.e., $B(\Gamma)=\sum_{i=0}^{\lambda-1}$

With the above definition, we can more formally define the λ cube intersection problem as follows:

Given $n>0, \lambda>0$, and $2^{\lambda}-1$ numbers $v_{1}, v_{2}, \ldots v_{2 \lambda_{-1}} \in S=$ $\left\{s \mid s=0\right.$ or $\left.s=2^{k}, k=0,1, \ldots, n\right\}$, determine whether there exists a set of λ cubes $c_{0}, \ldots, c_{\lambda-1}$ on n variables x_{0}, \ldots, x_{n-1}, such that for any $1 \leq \Gamma \leq 2^{\lambda}-1, V\left(C^{\Gamma}\right)=v_{\Gamma}$.

We refer to the vector of numbers $\left(v_{1}, \ldots, v_{2^{\lambda}-1}\right)$ as an intersection pattern on λ cubes, or simply as an intersection pattern. If a set of λ cubes $c_{0}, \ldots, c_{\lambda-1}$ satisfies the property that for any $1 \leq \Gamma \leq 2^{\lambda}-1, V\left(C^{\Gamma}\right)=v_{\Gamma}$, then we say that the set of cubes satisfies the intersection pattern $\left(v_{1}, \ldots, v_{2 \lambda-1}\right)$.
For convenience, we represent a cube as a cube-variable row vector and a set of cubes as a cube-variable matrix. These are defined as follows.

Definition 4

Given a nonempty cube c on n variables x_{0}, \ldots, x_{n-1}, we represent it by a cube-variable row vector U of length n, whose elements are from the set $\{0,1, *\}$. If the j-th $(0 \leq j \leq n-1)$ element $U_{j}=1$, then the literal x_{j} appears in the cube \bar{c}; if $U_{j}=0$, then the literal \bar{x}_{j} appears in the cube c; if $U_{j}=*$, then the cube c does not depend on the variable x_{j}.
Given a set of λ nonempty cubes $c_{0}, \ldots, c_{\lambda-1}$ on n variables x_{0}, \ldots, x_{n-1}, we represent them by a cube-variable matrix D of size $\lambda \times n$, so that the i-th row of the matrix is the cube-variable row vector of c_{i}.

For example, a set of two cubes $c_{0}=x_{0} \wedge \bar{x}_{1}$ and $c_{1}=\bar{x}_{0} \wedge x_{2}$ is represented as a cube-variable matrix

$$
\left[\begin{array}{lll}
1 & 0 & * \\
0 & * & 1
\end{array}\right]
$$

Given a cube-variable row vector, the following simple lemma suggests how to obtain the number of vertices covered by the corresponding cube.

Lemma 1

If the cube-variable row vector of a nonempty cube contains $k *$'s, then the cube covers 2^{k} number of vertices.

Definition 5
For a value a in $\{0,1, *\}$, the negation of a is defined as

$$
\bar{a}= \begin{cases}1, & \text { if } a=0 \\ 0, & \text { if } a=1 \\ *, & \text { if } a=*\end{cases}
$$

The negation of a cube-variable matrix (column vector) is the elementwise negation of the matrix (column vector). \square

In what follows, we will say that a cube-variable matrix satisfies the given intersection pattern if the corresponding set of cubes satisfies the intersection pattern. The following lemma is straightforward.

Lemma 2

Suppose that a cube-variable matrix D satisfies the intersection pattern $\left(v_{1}, \ldots, v_{2^{\lambda}-1}\right)$. Then D^{\prime} satisfies the same intersection pattern if D^{\prime} is obtained from D by column permutation or column negation.

3. A SPECIAL CASE OF THE λ-CUBE INTERSECTION PROBLEM

Here we consider a specific case in which $v_{2 \lambda-1}>0$. First, we have the following theorem, which gives a necessary condition for λ cubes to satisfy the given intersection pattern.

Theorem 1

If $v_{2^{\lambda}-1}>0$ and there exist λ cubes to satisfy the λ-cube intersection problem, then for any $1 \leq \Gamma \leq 2^{\lambda}-1, v_{\Gamma}$ can be represented as $v_{\Gamma}=2^{k_{\Gamma}}$, where $0 \leq k_{\Gamma} \leq n$ is an integer.

Proof. Based on Definition 2, for any $1 \leq \Gamma \leq 2^{\lambda}-1$, $C^{2^{\lambda}-1} \subseteq C^{\Gamma}$. Therefore,

$$
0<v_{2^{\lambda}-1}=V\left(C^{2^{\lambda}-1}\right) \leq V\left(C^{\Gamma}\right)=v_{\Gamma} .
$$

Since for any $1 \leq \Gamma \leq 2^{\lambda}-1, v_{\Gamma} \in S$ and $v_{\Gamma}>0$, therefore, there exists an integer $0 \leq k_{\Gamma} \leq n$, such that $v_{\Gamma}=2^{k_{\Gamma}}$.

In what follows, we will assume that there exist λ cubes to satisfy the given intersection pattern. Then, there exist $2^{\lambda}-1$ integers $k_{1}, \ldots, k_{2^{\lambda}-1}$ such that for any $1 \leq \Gamma \leq 2^{\lambda}-1, v_{\Gamma}=2^{k_{\Gamma}}$. Further, notice that $V\left(C^{0}\right)=2^{n}$. We let $v_{0}=2^{n}$ and $k_{0}=n$.
Without loss of generality, we could assume that each entry of the cube-variable matrix is either 1 or $*$. Since $\bigwedge_{i=0}^{\lambda-1} c_{i} \neq 0$, then for each column of the matrix D, it does not simultaneously contain both a 0 and a 1 . Otherwise, $\bigwedge_{i=0}^{\lambda-1} c_{i}=0$. Therefore, each column of the matrix D contains either only 0 's and $*$'s or only 1 's and *'s. By Lemma 2, if we negate those columns of the matrix D that contain only 0 's and $*$'s, then the new matrix D^{\prime} obtained still satisfies the given intersection pattern. The matrix D^{\prime} only contains 1's and *'s.

Definition 6

Given any $0 \leq \Gamma \leq 2^{\lambda}-1$, suppose that $\Gamma=\sum_{i=0}^{\lambda-1} \gamma_{i} 2^{i}$, where $\gamma_{i} \in\{0,1\}$. Define ψ_{Γ} to be a column vector of length λ with elements from the set $\{1, *\}$, such that the i-th element $(0 \leq i \leq$ $\lambda-1)$ of it is

$$
\left(\psi_{\Gamma}\right)_{i}= \begin{cases}1, & \text { if } \gamma_{i}=0 \\ *, & \text { if } \gamma_{i}=1\end{cases}
$$

For example, if $\lambda=3$, then $\psi_{0}=(1,1,1)^{T}$ and $\psi_{5}=(*, 1, *)^{T}$. Since each column of the cube-variable matrix only contains 1 's and $*^{\prime}$ s, each column $D_{\cdot j}$ is in the set $\left\{\psi_{0}, \psi_{1}, \ldots, \psi_{2^{\lambda}-1}\right\}$.

Definition 7

For any $0 \leq \Gamma \leq 2^{\lambda}-1$, define J_{Γ} to be the set of indices of the columns in the matrix D of the form ψ_{Γ}, i.e., $J_{\Gamma}=\left\{j \mid D_{\cdot j}=\psi_{\Gamma}\right\}$. Define z_{Γ} to be the cardinality of the set J_{Γ}.

Definition 8

Given two integers A and B, let their binary representation be $A=$ $\sum_{i=0}^{k-1} a_{i} 2^{i}$ and $B=\sum_{i=0}^{k-1} b_{i} 2^{i}$, where $a_{i}, b_{i} \in\{0,1\}$. We write $A \succeq B$ when for any $0 \leq i \leq k-1, a_{i} \geq b_{i}$.

The following theorem gives relation between $\left\{z_{0}, \ldots z_{2^{\lambda}-1}\right\}$ and $\left\{k_{0}, \ldots, k_{2^{\lambda}-1}\right\}$.

Theorem 2

For any $0 \leq L \leq 2^{\lambda}-1$, we have

$$
\begin{equation*}
k_{L}=\sum_{0 \leq \Gamma \leq 2^{\lambda-1: \Gamma \succeq L}} z_{\Gamma} . \tag{1}
\end{equation*}
$$

Proof. Since the total number of columns in matrix D is n, we have $\sum_{\Gamma=0}^{2^{\lambda}-1} z_{\Gamma}=n=k_{0}$, or $\sum_{0 \leq \Gamma \leq 2^{\lambda}-1: \Gamma \succeq 0} z_{\Gamma}=k_{0}$. Thus, Equation (1) holds for $L=0$.

Now consider $1 \leq L \leq 2^{\lambda}-1$. Then L can be represented as $L=\sum_{j=0}^{r-1} 2^{l_{j}}$, where $1 \leq r \leq \lambda$ and $0 \leq l_{0}<\cdots<l_{r-1} \leq$ $\lambda-1$. Then, C^{L} represents the intersection of the set of cubes $c_{l_{0}}, \ldots, c_{l_{r-1}}$. The i-th entry in the cube-variable row vector of their intersection C^{L} is $*$ if and only if the column $D_{. i}$ has *'s on the row $l_{0}, l_{1}, \ldots, l_{r-1}$. Therefore, the number of $*$'s in the cube-variable row vector of their intersection C^{L} is the number of
columns in D, whose entries on the row $l_{0}, l_{1}, \ldots, l_{r-1}$ are all $*$'s, or

$$
\sum_{\substack{\begin{subarray}{c}{0 \leq \Gamma \leq 2^{\lambda}-1: \\
\left(\psi_{\Gamma}\right)_{l_{0}}=\cdots=\left(\psi_{\Gamma}\right)_{l_{r-1}}=*} }}\end{subarray}} z_{\Gamma} .
$$

On the other hand, by Lemma 1 , since $V\left(C^{L}\right)=2^{k_{L}}$, the number of $*$'s in the cube-variable row vector of C^{L} is k_{L}. Therefore, we have

$$
\begin{equation*}
k_{L}=\sum_{\substack{0 \leq \Gamma \leq 2^{\lambda}-1: \\\left(\psi_{\Gamma}\right) l_{0}}} z_{\Gamma}=\sum_{\substack{\left.0 \leq \Gamma \leq 2^{\lambda}-1: \\ \gamma_{l_{0}} \\=\cdots \psi_{\Gamma}\right)_{l_{r-1}}=* \\=\gamma_{l_{r-1}}}} z_{\Gamma} \tag{2}
\end{equation*}
$$

where $L=\sum_{j=0}^{r-1} 2^{l_{j}}$ and $\Gamma=\sum_{i=0}^{\lambda-1} \gamma_{i} 2^{i}$.
By Definition 8, we can rewrite Equation (2) as

$$
k_{L}=\sum_{0 \leq \Gamma \leq 2^{\lambda-1}: \Gamma \succeq L} z_{\Gamma}
$$

Note that Equation (1) is a linear equation in $z_{0}, \ldots, z_{2^{\lambda}-1}$ and holds for all $0 \leq L \leq 2^{\lambda}-1$. Therefore, we can derive a system of 2^{λ} linear equations on unknowns $z_{0}, \ldots, z_{2^{\lambda}-1}$:

$$
\begin{equation*}
\sum_{0 \leq \Gamma \leq 2^{\lambda}-1: \Gamma \succeq L} z_{\Gamma}=k_{L}, \text { for } L=0,1, \ldots, 2^{\lambda}-1 \tag{3}
\end{equation*}
$$

We can represent the above system of linear equations in matrix form, as shown by the following theorem.

Theorem 3

Let vector $\vec{k}=\left(k_{0}, \ldots, k_{2^{\lambda}-1}\right)^{T}$ and vector $\vec{z}=\left(z_{0}, \ldots, z_{2^{\lambda}-1}\right)^{T}$. Then we can represent the system of 2^{λ} linear equations (3) in matrix form as

$$
\begin{equation*}
R_{\lambda} \vec{z}=\vec{k} \tag{4}
\end{equation*}
$$

where R_{λ} is a $2^{\lambda} \times 2^{\lambda}$ square matrix recursively defined as follows:

$$
R_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], R_{i}=\left[\begin{array}{cc}
R_{i-1} & R_{i-1} \\
0 & R_{i-1}
\end{array}\right], \text { for } i=2, \ldots, \lambda
$$

Due to space constraints, we omit the proof.
It is not hard to see that $\operatorname{det}\left(R_{\lambda}\right)=1$. Therefore, R_{λ} is invertible. The following theorem shows what R_{λ}^{-1} is.

Theorem 4

R_{λ}^{-1} is recursively defined as follows:
$R_{1}^{-1}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right], R_{i}^{-1}=\left[\begin{array}{cc}R_{i-1}^{-1} & -R_{i-1}^{-1} \\ 0 & R_{i-1}^{-1}\end{array}\right]$, for $i=2, \ldots, \lambda$.
Therefore, given $k_{0}, k_{1}, \ldots, k_{2^{\lambda}-1}$, we can get $z_{0}, z_{1}, \ldots, z_{2^{\lambda}-1}$ as $\vec{z}=R_{\lambda}^{-1} \vec{k}$.

Since for any $0 \leq \Gamma \leq 2^{\lambda}-1, z_{\Gamma}$ is the cardinality of the set J_{Γ}, therefore, z_{Γ} must be a non-negative integer. By Theorem $4, R_{\lambda}^{-1}$ is an integer matrix. Therefore, $z_{0}, \ldots, z_{2^{\lambda}-1}$ are always integers. Thus, a necessary condition for the existence of λ cubes to satisfy the given intersection pattern is that the vector $R_{\lambda}^{-1} \vec{k}$ has all entries non-negative. From Equation (4), we can see that the intersection pattern $\left(2^{k_{1}}, \ldots, 2^{k_{2^{\lambda}-1}}\right)$ only depends on $z_{0}, \ldots, z_{2^{\lambda}-1}$. Therefore, as long as the vector $R_{\lambda}^{-1} \vec{k}$ has all entries non-negative, there exist λ cubes to satisfy the given intersection pattern. In fact, we can construct λ cubes with their cube-variable matrix as follows: for any column $0 \leq j \leq n-1$ of D, we can find a $0 \leq \Gamma \leq 2^{\lambda}-1$ such that $\sum_{i=0}^{\Gamma-1} z_{i} \leq \bar{j} \leq \sum_{i=0}^{\Gamma} z_{i}-1$. Then, we let $D_{\cdot j}=\psi_{\Gamma}$. In summary, we have the following corollary.

Corollary 1

The necessary and sufficient condition for the existence of λ cubes to satisfy the given intersection pattern $\left(2^{k_{1}}, \ldots, 2^{k_{2} \lambda}-1\right)$ is that the vector $R_{\lambda}^{-1} \vec{k}$ has all entries non-negative, where $\vec{k}=\left(n, k_{1}, \ldots, k_{2^{\lambda}-1}\right)^{T}$ and R_{λ}^{-1} is defined in Theorem 4.

Example 2

Given $v_{1}=4, v_{2}=4$, and $v_{3}=1$, determine whether there exists a set of 2 cubes c_{0} and c_{1} on 4 variables to satisfy the intersection pattern $\left(v_{1}, v_{2}, v_{3}\right)$.
Solution: From the given conditions, we have $\vec{k}=(4,2,2,0)^{T}$. Since

$$
R_{2}^{-1}=\left[\begin{array}{cccc}
1 & -1 & -1 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

then by Equation (4), we get $\vec{z}=(0,2,2,0)^{T}$. Therefore, there are two ψ_{1} 's and two ψ_{2} 's in the cube-variable matrix of c_{0} and c_{1}. One realization of the cube-variable matrix is

$$
\left[\begin{array}{llll}
* & * & 1 & 1 \\
1 & 1 & * & *
\end{array}\right]
$$

and the corresponding cubes are $c_{0}=x_{2} \wedge x_{3}$ and $c_{1}=x_{0} \wedge x_{1}$.

4. GENERAL λ-CUBE INTERSECTION PROBLEM

In this section, we consider the more general situation where $v_{2^{\lambda}-1} \geq 0$. Since we consider a set of nonempty cubes $c_{0}, \ldots, c_{\lambda-1}$, we assume that for any $0 \leq i \leq \lambda-1, v_{2^{i}}=V\left(c_{i}\right)>0$. Further, notice that $V\left(C^{0}\right)=2^{n}$. We let $v_{0}=2^{n}$.

4.1 Necessary Conditions on the Positive v_{Γ} 's
 We first have the following theorem applicable for numbers $v_{\Gamma}>$ 0.

Theorem 5

If there exist λ cubes $c_{0}, \ldots, c_{\lambda-1}$ to satisfy the intersection pattern, then for any $1 \leq L \leq 2^{\lambda}-1$ such that $v_{L}>0$, we have that for any $1 \leq \Gamma \leq 2^{\lambda}-1$ such that $L \succeq \Gamma, v_{\Gamma}>0$.

Proof. For any $1 \leq \Gamma \leq 2^{\lambda}-1$ such that $L \succeq \Gamma$, it is not hard to see that $C^{L} \subseteq C^{\Gamma}$. Therefore,

$$
0<v_{L}=V\left(C^{L}\right) \leq V\left(C^{\Gamma}\right)=v_{\Gamma}
$$

If a set of cubes is pairwise non-disjoint, then it has the following property.

Lemma 3

If a set of r cubes $c_{l_{0}}, \ldots, c_{l_{r-1}}\left(3 \leq r \leq \lambda, 0 \leq l_{0}<\cdots<\right.$ $l_{r-1} \leq \lambda-1$) is pairwise non-disjoint, i.e., for any $0 \leq i<j \leq$ $r-1, c_{l_{i}} \wedge c_{l_{j}} \neq 0$, then their intersection $\bigwedge_{i=0}^{r-1} c_{l_{i}}$ is nonempty.

Proof. By contraposition, suppose that $\bigwedge_{i=0}^{r-1} c_{l_{i}}=0$. Consider the cube-variable matrix on these r cubes. Since their intersection is empty, there exists a column in the matrix that contains both a 0 and a 1 . The cube corresponding to the 0 entry and the cube corresponding to the 1 entry are disjoint. This contradicts the assumption that the given set of cubes is pairwise non-disjoint.

Alternatively, Lemma 3 can be stated on the numbers v_{Γ}. This gives a necessary condition for the existence of a set of cubes to satisfy the given intersection pattern.

Theorem 6

Suppose that there exist λ cubes $c_{0}, \ldots, c_{\lambda-1}$ to satisfy the given intersection pattern. If a set of $r(3 \leq r \leq \lambda)$ numbers $0 \leq l_{0}<$ $\cdots<l_{r-1} \leq \lambda-1$ satisfies that for any $0 \leq i<j \leq r-1$, $v_{\left(2^{\left.l_{i}+2^{l_{j}}\right)}\right.}>\overline{0}$, then for $L=\sum_{i=0}^{r-1} 2^{l_{i}}, v_{L}>\overline{0}$.

For example, suppose that in a 4-cube intersection problem we are given $v_{3}>0, v_{9}>0$, and $v_{10}>0$. If there exist 4 cubes to satisfy the given intersection pattern, then since $V\left(c_{0} \wedge c_{1}\right)>0$,
$V\left(c_{0} \wedge c_{3}\right)>0$, and $V\left(c_{1} \wedge c_{3}\right)>0$, we must have $v_{11}=$ $V\left(c_{0} \wedge c_{1} \wedge c_{3}\right)>0$.
For the convenience, we first give the following definition.

Definition 9

Define

$$
\begin{aligned}
& P=\left\{\Gamma \mid 0 \leq \Gamma \leq 2^{\lambda}-1 \text { and } v_{\Gamma}>0\right\} \\
& Z=\left\{\Gamma \mid 0 \leq \Gamma \leq 2^{\lambda}-1 \text { and } v_{\Gamma}=0\right\}
\end{aligned}
$$

For any $0 \leq i \leq \lambda$, define

$$
\begin{aligned}
& P_{i}=\left\{\Gamma \mid 0 \leq \Gamma \leq 2^{\lambda}-1, B(\Gamma)=i, \text { and } v_{\Gamma}>0\right\} \\
& Z_{i}=\left\{\Gamma \mid 0 \leq \Gamma \leq 2^{\lambda}-1, B(\Gamma)=i, \text { and } v_{\Gamma}=0\right\}
\end{aligned}
$$

From the definition of P and Z, we have the following obvious lemma, which gives a necessary condition on the existence of λ cubes to satisfy the given intersection pattern.

Lemma 4

If λ cubes $c_{0}, \ldots, c_{\lambda-1}$ satisfy the given intersection pattern, then for any $\Gamma \in P, C^{\Gamma} \neq 0$ and for any $\Gamma \in Z, C^{\Gamma}=0$.

However, by the following theorem, the above necessary condition could be reduced to the condition that for any $\Gamma \in P_{2}, C^{\Gamma} \neq 0$ and for any $\Gamma \in Z_{2}, C^{\Gamma}=0$.

Theorem 7

Suppose that the given intersection pattern satisfies both Theorem 5 and 6:

1. For any $1 \leq L \leq 2^{\lambda}-1$, if $v_{L}>0$, then for any $1 \leq \Gamma \leq$ $2^{\lambda}-1$ such that $L \succeq \Gamma, v_{\Gamma}>0$.
2. For any set of $r(3 \leq r \leq \lambda)$ numbers $0 \leq l_{0}<\cdots<$ $l_{r-1} \leq \lambda-1$, if it satisfies that for any $0 \leq i<j \leq r-1$, $v_{\left(2^{l_{i}}+2^{l_{j}}\right)}>0$, then for the number $L=\sum_{i=0}^{r-1} 2^{l_{i}}, v_{L}>0$.

Then, a necessary and sufficient condition for a set of λ nonempty cubes to satisfy the condition that for any $\Gamma \in P, C^{\Gamma} \neq 0$ and for any $\Gamma \in Z, C^{\Gamma}=0$ is that for any $\Gamma \in P_{2}, C^{\Gamma} \neq 0$ and for any $\Gamma \in Z_{2}, C^{\Gamma}=0$

Proof. The necessary part of the theorem is obvious, since the set P_{2} is a subset of the set P and the set Z_{2} is a subset of the set Z.

Now we prove the sufficient part. Suppose that a set of cubes satisfies that for any $\Gamma \in P_{2}, C^{\Gamma} \neq 0$ and for any $\Gamma \in Z_{2}, C^{\Gamma}=0$.
It is not hard to see that the sets $P_{0}, \ldots, P_{\lambda}$ form a partition of the set P and that the sets $Z_{0}, \ldots, Z_{\lambda}$ form a partition of the set Z. Thus, we only need to prove that for all $0 \leq k \leq \lambda$, the set of cubes satisfies the condition that for any $\Gamma \in P_{k}, C^{\Gamma} \neq 0$ and for any $\Gamma \in Z_{k}, C^{\Gamma}=0$.
We first consider the case that $k=0$. By convention, $v_{0}>0$. Thus, $P_{0}=\{0\}$ and $Z_{0}=\phi$. Since $C^{0}=1$, thus we have that for any $\Gamma \in P_{0}, C^{\Gamma} \neq 0$. Since $Z_{0}=\phi$, the statement that for any $\Gamma \in Z_{0}, C^{\Gamma}=0$ also holds.
Now we consider the case that $k=1$. Since we assume that for any $0 \leq i \leq \lambda-1$, $v_{2^{i}}>0$, therefore, $P_{1}=\left\{2^{i} \mid i=0, \ldots, \lambda-1\right\}$ and $Z_{1}=\phi$. Since $c_{0}, \ldots, c_{\lambda-1}$ are all nonempty, thus we have that for any $\Gamma \in P_{1}, C^{\Gamma} \neq 0$. Since $Z_{1}=\phi$, the statement that for any $\Gamma \in Z_{1}, C^{\Gamma}=0$ also holds.

When $k=2$, the statement that the set of cubes satisfies that for any $\Gamma \in P_{2}, C^{\Gamma} \neq 0$ and for any $\Gamma \in Z_{2}, C^{\Gamma}=0$ obviously holds.
Now we consider the case that $k \geq 3$. First, we consider any $L \in P_{k}$. Suppose that $L=\sum_{i=0}^{r-1} 2^{l_{i}}$, where $3 \leq r \leq \lambda$ and $0 \leq l_{0}<\cdots<l_{r-1} \leq \lambda-1$. Then, for any $0 \leq i<j \leq r-1$, $L \succeq\left(2^{l_{i}}+2^{l_{j}}\right)$. Therefore, based on the given condition, we have $v_{\left(2^{\left.l_{i}+2^{l_{j}}\right)}\right.}>0$. Since $B\left(2^{l_{i}}+2^{l_{j}}\right)=2$, thus $\left(2^{l_{i}}+2^{l_{j}}\right) \in P_{2}$. By the assumption that for any $\Gamma \in P_{2}, C^{\Gamma} \neq 0$, we have that $C^{\left(2^{l_{i}}+2^{l_{j}}\right)}=c_{l_{i}} \wedge c_{l_{j}} \neq 0$. Thus, the r cubes $c_{l_{0}}, \ldots, c_{l_{r-1}}$ are pairwise non-disjoint. By Lemma 3, then $C^{L}=\bigwedge_{i=0}^{r-1} c_{l_{i}} \neq 0$. Therefore, for any $L \in P_{k}, C^{L} \neq 0$.

Now we consider any $L \in Z_{k}$. Suppose that $L=\sum_{i=0}^{r-1} 2^{l_{i}}$, where $3 \leq r \leq \lambda$ and $0 \leq l_{0}<\cdots<l_{r-1} \leq \lambda-1$. We argue that there exist two numbers $0 \leq u<v \leq r-1$, such that $v_{\left(2^{l} u+2^{l} v\right)}=0$. Otherwise, for any $0 \leq i<j \leq r-1$, $v_{\left(2^{l} i+2^{l} j\right)}>0$. Then, based on the given conditions, we have $v_{L}>0$. Therefore, it contradicts the assumption that $L \in Z_{k}$. Thus, there exist two numbers $0 \leq u<v \leq r-1$, such that $v_{\left(2^{l u}+2^{l v}\right)}=0$. Since $B\left(2^{l_{u}}+\overline{2}^{l_{v}}\right)=2$, thus $\left(2^{l_{u}}+2^{l_{v}}\right) \in$ Z_{2}. By the assumption that for any $\Gamma \in Z_{2}, C^{\Gamma}=0$, we have that $C^{\left(2^{l u}+2^{l v}\right)}=c_{l_{u}} \wedge c_{l_{v}}=0$. Thus, $C^{L}=\bigwedge_{i=0}^{r-1} c_{l_{i}}=0$. Therefore, for any $L \in Z_{k}, C^{L}=0$.

For any $\Gamma \in P$, we assume $v_{\Gamma}=2^{k_{\Gamma}}$, where $0 \leq k_{\Gamma} \leq n$ is an integer. Since $v_{0}=2^{n}$, we let $k_{0}=n$. First, we give the following definition.

Definition 10

Given a cube-variable matrix D on λ cubes $c_{0}, \ldots, c_{\lambda-1}$, we define root cube-variable matrix $t(D)$ of D as the cube-variable matrix formed by replacing the 0 entries in D with 1 's and keeping the other entries in D unchanged. The set of cubes $c_{0}^{\prime}, \ldots, c_{\lambda-1}^{\prime}$ corresponding to the root matrix is called the set of root cubes to the original set of cubes.

For example, the root matrix of the cube-variable matrix

The set of root cubes is $c_{0}^{\prime}=x_{0} \wedge x_{1}$ and $c_{1}^{\prime}=x_{0} \wedge x_{2}$.
Based on the definition of the set of root cubes, it is not hard to prove the following lemma.

Lemma 5

Suppose that the set of root cubes to the set of original cubes
$c_{0}, \ldots, c_{\lambda-1}$ is $c_{0}^{\prime}, \ldots, c_{\lambda-1}^{\prime}$. Then, for any $\Gamma \in P$, we have $V\left(C^{\Gamma}\right)=V\left(C^{\Gamma}\right)$.

Since the root matrix $t(D)$ is a matrix containing only 1's and *'s, we can apply the definition of z_{Γ} in Definition 7 to $t(D)$. Then, based on the fact that for any $\Gamma \in P, V\left(C^{\prime \Gamma}\right)=V\left(C^{\Gamma}\right)=2^{k_{\Gamma}}$, it is not hard to show that the following theorem characterizing the relation between z_{Γ} 's and k_{L} 's holds.

Theorem 8

If there exist λ cubes to satisfy the given intersection pattern, then for any $L \in P$,

$$
\sum_{0 \leq \Gamma \leq 2^{\lambda}-1: \Gamma \succeq L} z_{\Gamma}=k_{L}
$$

4.2 A Necessary and Sufficient Condition

In this section, we will show a necessary and sufficient condition for the existence of a set of cubes to satisfy the given intersection pattern. As a byproduct, the proof provides a way of synthesizing a set of cubes to satisfy the given intersection pattern. First, we define the compatible column pattern set for a number $\Gamma \in Z_{2}$.

Definition 11

Suppose that $\Gamma \in Z_{2}$ and $\Gamma=2^{i}+2^{j}$, where $0 \leq i<j \leq$ $\lambda-1$. The compatible column pattern set for Γ is the set of column vectors W of length λ with entries from the set $\{0,1, *\}$, such that

1. $W_{i}=0$ and $W_{j}=1$ or $W_{i}=1$ and $W_{j}=0$,
2. for any number $L \in P_{2}$ such that $L=2^{k}+2^{l}$, where $0 \leq$ $k<l \leq \lambda-1$, the situation that $W_{k}=0$ and $W_{l}=1$ or $W_{k}=1$ and $W_{l}=0$ does not happen.

It is not hard to see that if a cube-variable column vector is in the compatible column pattern set for a $\Gamma \in Z_{2}$, then the negation of that cube-variable column vector is also in that set. Therefore, we define the representative compatible column pattern set as follows.

Definition 12

The representative compatible column pattern set ρ_{Γ} for $\Gamma \in Z_{2}$ is a subset of the compatible column pattern set for Γ such that the first non-* entry of each element in the representative set is 0 .

Example 3

Consider a 4-cube intersection problem with

$$
\begin{aligned}
& P_{2}=\left\{(0011)_{2},(0101)_{2},(1001)_{2}\right\} \\
& Z_{2}=\left\{(0110)_{2},(1010)_{2},(1100)_{2}\right\}
\end{aligned}
$$

The compatible column pattern set for $\Gamma=(0110)_{2} \in Z_{2}$ is

$$
\left\{(* 010)^{T},(* 101)^{T},(* 011)^{T},(* 100)^{T},(* 01 *)^{T},(* 10 *)^{T}\right\} .
$$

The representative compatible column pattern set for $\Gamma=(0110)_{2}$ is $\left\{(* 010)^{T},(* 011)^{T},(* 01 *)^{T}\right\}$.

Definition 13

We define the set Y as the union of the representative compatible column pattern sets ρ_{Γ} for all $\Gamma \in Z_{2}$, i.e., $Y=\bigcup_{\Gamma \in Z_{2}} \rho_{\Gamma}$. We define the set F as the union of the set Y and the set of patterns contain only 1 's and $*$'s, i.e., $F=\bigcup_{i=0}^{2^{\lambda}-1}\left\{\psi_{i}\right\} \cup Y$.

Lemma 6

If there exists a cube-variable matrix D to satisfy the given intersection pattern, then there exists another matrix D^{\prime} which also satisfies the given intersection pattern and each column of which is in the set F.

Proof. First, we argue that for any column of D which contains both a 0 and a 1 entry, the column is in the compatible column pattern set of a certain $\Gamma \in Z_{2}$. In fact, if a column $r(0 \leq r \leq$ $n-1$) of D has the i-th entry being 0 and the j-th entry being $\overline{1}$, where $0 \leq i, j \leq \lambda-1$ and $i \neq j$, then it is not hard to show that the column is in the compatible column pattern set for the number $\left(2^{i}+2^{j}\right) \in Z_{2}$.
We can construct a D^{\prime} from D as follows. For any column $0 \leq$ $r \leq \lambda-1$:

1. If $D_{. r}$ contains only 1 's and $*$'s, we let $D_{. r}^{\prime}$ be $D_{. r}$. Then $D_{\cdot r}^{\prime}$ is in the set $\bigcup_{i=0}^{2^{\lambda}-1}\left\{\psi_{i}\right\}$.
2. If $D_{. r}$ contains only 0 's and $*^{\prime}$ s, we let $D_{. r}^{\prime}$ be the negation of the column $D_{\text {.r }}$. Then $D_{\cdot r}^{\prime}$ is in the set $\bigcup_{i=0}^{2^{\lambda}-1}\left\{\psi_{i}\right\}$.
3. If $D_{. r}$ contains both a 0 and a 1 and the first non-* entry of $D_{\cdot r}$ is 0 , we let $D_{\cdot r}^{\prime}$ be $D_{. r}$. Then, there exists a $\Gamma \in Z_{2}$ such that $D_{{ }^{\prime}}^{\prime}$ is in the set ρ_{Γ}.
4. If $D . r$ contains both a 0 and a 1 and the first non-* entry of $D_{\cdot r}$ is 1 , we let D_{r}^{\prime} be the negation of the column $D_{. r}$. Then, there exists a $\Gamma \in Z_{2}$ such that $D_{\cdot r}^{\prime}$ is in the set ρ_{Γ}.

Then, by the above construction, each column of D^{\prime} is in the set F. Further, D^{\prime} is obtained from D by column negations. Thus, by Lemma $2, D^{\prime}$ also satisfies the given intersection pattern.

Based on Lemma 6, we only need to answer whether there exists a cube-variable matrix with columns from the set F to satisfy the given intersection pattern.

Lemma 7

If a cube-variable matrix D with columns from the set F satisfies the given intersection pattern, then for any $\Gamma \in Z_{2}$, there exists a column in D which is in the set ρ_{Γ}.
Proof. For any $\Gamma \in Z_{2}$, suppose that $\Gamma=2^{i}+2^{j}$, where $0 \leq i<j \leq \lambda-1$. Since the cube-variable matrix satisfies the given intersection pattern, then based on Lemma 4 , for the $\Gamma \in Z_{2}$, we must have $C^{\Gamma}=0$ or $c_{i} \wedge c_{j}=0$. Thus, there must exist a column r in D, such that $D_{i r}=0$ and $D_{j r}=1$ or $D_{i r}=1$ and $D_{j r}=0$. Now consider any $L \in P_{2}$. Suppose that $L=2^{k}+2^{l}$, where $0 \leq k<l \leq \lambda-1$. Since the necessary condition for the cube-variable matrix to satisfy a given intersection pattern is that for the $L \in P_{2}, C^{L} \neq 0$, the situation that $D_{k r}=0$ and $D_{l r}=1$ or $D_{k r}=1$ and $D_{l r}=0$ cannot happen. Therefore, the column r of D is in the compatible column pattern set for Γ. Further, since all the columns of D are in the set F, then column r must be in the set ρ_{Γ}.

By the similar definition of root cube-variable matrix, we define root column vector as follows.

Definition 14

Given a column vector W with each element in the set $\{0,1, *\}$, define its root column vector $t(W)$ as the column vector obtained from W by replacing the 0 entries in W with 1 's and keeping the other entries in W unchanged.

Definition 15

We define the set M to be the set of numbers $0 \leq \Gamma \leq 2^{\lambda}-1$ such that there exists an element in the set Y, whose root column vector is ψ_{Γ}, i.e.,

$$
M=\left\{\Gamma \mid 0 \leq \Gamma \leq 2^{\lambda}-1 \text {, s.t. } \exists W \in Y \text { s.t. } t(W)=\psi_{\Gamma}\right\} .
$$

Define \bar{M} as $\bar{M}=\left\{\Gamma \mid 0 \leq \Gamma \leq 2^{\lambda}-1, \Gamma \notin M\right\}$.
For any $\Gamma \in M$, we define the set Y_{Γ} to be the set of elements in the set Y such that their root column vectors are ψ_{Γ}, i.e., $Y_{\Gamma}=$ $\left\{W \mid W \in Y\right.$ and $\left.t(W)=\psi_{\Gamma}\right\}$.

Example 4

For the intersection pattern shown in Example 3, we have $Z_{2}=$ $\{6,10,12\}$ and

$$
\begin{aligned}
\rho_{6} & =\left\{(* 010)^{T},(* 011)^{T},(* 01 *)^{T}\right\}, \\
\rho_{10} & =\left\{(* 001)^{T},(* 011)^{T},(* 0 * 1)^{T}\right\}, \\
\rho_{12} & =\left\{(* 010)^{T},(* 001)^{T},(* * 01)^{T}\right\} .
\end{aligned}
$$

Thus,
$Y=\left\{(* 010)^{T},(* 001)^{T},(* 011)^{T},(* * 01)^{T},(* 0 * 1)^{T},(* 01 *)^{T}\right\}$, $M=\{1,3,5,9\}$,
and $Y_{1}=\left\{(* 010)^{T},(* 001)^{T},(* 011)^{T}\right\}, Y_{3}=\left\{(* * 01)^{T}\right\}, Y_{5}=$ $\left\{(* 0 * 1)^{T}\right\}$, and $Y_{9}=\left\{(* 01 *)^{T}\right\}$.

Definition 16

For any $\Gamma \in M$, we let the $\left|Y_{\Gamma}\right|$ elements in the set Y_{Γ} be $\delta_{\Gamma, 0}, \ldots, \delta_{\Gamma,\left|Y_{\Gamma}\right|-1}$. For any $0 \leq i \leq\left|Y_{\Gamma}\right|-1$, we define $K_{\Gamma, i}$ to be the set of indices of the columns in the matrix D of the form $\delta_{\Gamma, i}$, i.e., $K_{\Gamma, i}=\left\{k \mid D_{\cdot k}=\delta_{\Gamma, i}\right\}$. We define $w_{\Gamma, i}$ to be the cardinality of the set $K_{\Gamma, i}$. \square

Theorem 9

Suppose that there exists a cube-variable matrix D to satisfy the given intersection pattern, whose columns are from the set F. Then,
we have that for any $\Gamma \in M$,

$$
\begin{equation*}
\sum_{i=0}^{\left|Y_{\Gamma}\right|-1} w_{\Gamma, i} \leq z_{\Gamma} \tag{5}
\end{equation*}
$$

where z_{Γ} 's are defined on the root matrix $t(D)$ according to Definition 7 and $w_{\Gamma, i}$'s are defined on the matrix D according to Definition 16. We also have that for any $L \in Z_{2}$,

$$
\begin{equation*}
\sum_{\substack{\Gamma \in M, 0 \leq i \leq\left|Y_{\Gamma}\right|-1:}} w_{\Gamma, i} \geq 1 \tag{6}
\end{equation*}
$$

Proof. Consider any $\Gamma \in M$. For any number $k \in \bigcup_{i=0}^{\left|Y_{\Gamma}\right|-1} K_{\Gamma, i}$, the column vector $D_{\cdot k}$ is in the set Y_{Γ}. Thus, the root column vector of $D_{\cdot k}$ is ψ_{Γ}. Thus, $k \in J_{\Gamma}$, where J_{Γ} is defined on the root matrix $t(D)$. Therefore, $\bigcup_{i=0}^{\left|Y_{\Gamma}\right|-1} K_{\Gamma, i} \subseteq J_{\Gamma}$. As a result, $\left|\bigcup_{i=0}^{\left|Y_{\Gamma}\right|-1} K_{\Gamma, i}\right| \leq\left|J_{\Gamma}\right|$, or $\sum_{i=0}^{\left|Y_{\Gamma}\right|-1} w_{\Gamma, i} \leq z_{\Gamma}$.

By Lemma 7, for any $L \in Z_{2}$, there exists a column in D which is in the set ρ_{L}. Suppose that column is of the form $\delta_{\Gamma^{*}, i^{*}} \in \rho_{L}$, where $\Gamma^{*} \in M$ and $0 \leq i \leq\left|Y_{\Gamma^{*}}\right|-1$. Thus,

$$
1 \leq w_{\Gamma^{*}, i^{*}} \leq \sum_{\substack{\Gamma \in M, 0 \leq i \leq\left|Y_{\Gamma}\right|-1:}} w_{\Gamma, i}
$$

Example 5

For the intersection pattern given in Example 3, based on the result shown in Example 4, we have

$$
\begin{aligned}
& \delta_{1,0}=(* 010)^{T}, \delta_{1,1}=(* 001)^{T}, \delta_{1,2}=(* 011)^{T} \\
& \delta_{3,0}=(* * 01)^{T}, \delta_{5,0}=(* 0 * 1)^{T}, \delta_{9,0}=(* 01 *)^{T}
\end{aligned}
$$

The set of equations (5) for all $\Gamma \in M$ in this example is

$$
\left\{\begin{array}{l}
w_{\Gamma, 0} \leq z_{\Gamma}, \text { for any } \Gamma \in\{3,5,9\} \\
w_{1,0}+w_{1,1}+w_{1,2} \leq z_{1}
\end{array}\right.
$$

The set of equations (6) for all $L \in Z_{2}$ in this example is

$$
\left\{\begin{array}{l}
w_{1,0}+w_{1,2}+w_{9,0} \geq 1 \\
w_{1,1}+w_{1,2}+w_{5,0} \geq 1 \\
w_{1,0}+w_{1,1}+w_{3,0} \geq 1
\end{array}\right.
$$

Finally, based on the necessary conditions for the existence of a cube-variable matrix to satisfy the given intersection pattern, shown in Theorem 5, 6, 8, and 9, we can derive a necessary and sufficient condition.

Theorem 10

There exists a cube-variable matrix D to satisfy the given intersection pattern $\left(v_{1}, \ldots, v_{2^{\lambda}-1}\right)$ if and only if

1. for any $1 \leq L \leq 2^{\lambda}-1$, if $v_{L}>0$, then for any $1 \leq \Gamma \leq$ $2^{\lambda}-1$ such that $L \succeq \Gamma, v_{\Gamma}>0$,
2. for any set of $r(3 \leq r \leq \lambda)$ numbers $0 \leq l_{0}<\cdots<$ $l_{r-1} \leq \lambda-1$, if it satisfies that for any $0 \leq i<j \leq r-1$, $v_{\left(2^{l_{i}}+2^{l_{j}}\right)}>0$, then for the number $L=\sum_{i=0}^{r-1} 2^{l_{i}}, v_{L}>0$, and
3. the system of equations on unknowns \tilde{z}_{Γ} (for all $0 \leq \Gamma \leq$ $\left.2^{\lambda}-1\right)$ and $\tilde{w}_{\Gamma, i}\left(\right.$ for all $\Gamma \in M$ and $\left.0 \leq i \leq\left|Y_{\Gamma}\right|-1\right)$

$$
\begin{array}{r}
\sum_{\substack{0 \leq \Gamma \leq 2^{\lambda}-1: \Gamma \succeq L}} \tilde{z}_{\Gamma}=k_{L}, \text { for all } L \in P \\
\sum_{i=0}^{\mid \sum_{\substack{ \\
\Gamma \in M, 0 \leq i \leq\left|Y_{\Gamma}\right|-1:}}^{\delta_{\Gamma, i} \in \rho_{L}} \substack{ \\
Y_{\Gamma} \mid-1}} \tilde{w}_{\Gamma, i} \leq \tilde{z}_{\Gamma}, \text { for all } \Gamma \in M \tag{7}
\end{array}
$$

has a non-negative integer solution. \square
Proof. "only if" part: Statement 1 in the theorem is due to Theorem 5 and Statement 2 in the theorem is due to Theorem 6.

Since D satisfies the given intersection pattern, then by Lemma 6, there exists another matrix D^{\prime} which also satisfies the given intersection pattern and each column of which is in the set F. For any $0 \leq \Gamma \leq 2^{\lambda}-1$, let $\tilde{z}_{\Gamma}=z_{\Gamma}$, where z_{Γ} 's are defined on the root matrix $t\left(D^{\prime}\right)$ according to Definition 7. For any $\Gamma \in M$ and $0 \leq i \leq\left|Y_{\Gamma}\right|-1$, let $\tilde{w}_{\Gamma, i}=w_{\Gamma, i}$, where $w_{\Gamma, i}$'s are defined on the matrix D^{\prime} according to Definition 16. By Theorem 8 and 9 , the set of numbers \tilde{z}_{Γ} and $\tilde{w}_{\Gamma, i}$ satisfies the system of equations (7). Since \tilde{z}_{Γ} is the cardinality of the set J_{Γ} and $\tilde{w}_{\Gamma, i}$ is the cardinality of the set $K_{\Gamma, i}$, therefore, \tilde{z}_{Γ} 's and $\tilde{w}_{\Gamma, i}$'s are all non-negative integers. Thus, the system of equations (7) has a non-negative solution.
"if" part: Let a non-negative solution to the system of equations (7) be $\tilde{z}_{\Gamma}=z_{\Gamma}$, for all $0 \leq \Gamma \leq 2^{\lambda}-1$, and $\tilde{w}_{\Gamma, i}=w_{\Gamma, i}$, for all $\Gamma \in M$ and $0 \leq i \leq\left|Y_{\Gamma}\right|-1$. Since for all $0 \leq \Gamma \leq 2^{\lambda}-1$, $z_{\Gamma} \geq 0$, for all $\Gamma \in M$ and $0 \leq i \leq\left|Y_{\Gamma}\right|-1, w_{\Gamma, i} \geq 0$, and for all $\Gamma \in M, \sum_{i=0}^{\left|Y_{\Gamma}\right|-1} w_{\Gamma, i} \leq z_{\Gamma}$, then, we can construct a cubevariable matrix D so that

1. for all $\Gamma \in \bar{M}$, the matrix contains z_{Γ} columns of the form ψ_{Γ},
2. for all $\Gamma \in M$, the matrix contains $z_{\Gamma}-\sum_{i=0}^{\left|Y_{\Gamma}\right|-1} w_{\Gamma, i}$ columns of the form ψ_{Γ}, and
3. for all $\Gamma \in M$ and all $0 \leq i \leq\left|Y_{\Gamma}\right|-1$, the matrix contains $w_{\Gamma, i}$ columns of the form $\delta_{\Gamma, i}$.
All columns of the matrix D are in the set F. Next, we prove that the matrix D satisfies the given intersection pattern.

For any $L \in Z_{2}$, suppose $L=2^{i}+2^{j}$, where $0 \leq i<j \leq \lambda-1$. Since $\sum_{\Gamma \in M, 0 \leq k \leq\left|Y_{\Gamma}\right|-1:} w_{\Gamma, k} \geq 1$, there exists a $\Gamma^{*} \in M$ and a $0 \leq k^{*} \leq\left|Y_{\Gamma^{*}}\right|-1$, such that $\delta_{\Gamma^{*}, k^{*}} \in \rho_{L}$ and $w_{\Gamma^{*}, k^{*}} \geq 1$. Therefore, the matrix D contains a column from the set ρ_{L}. Based on the definition of $\rho_{L}, C^{L}=c_{i} \wedge c_{j}=0$. Thus, for any $L \in Z_{2}$, $C^{L}=0$.
Now consider any $L \in P_{2}$. Suppose $L=2^{i}+2^{j}$, where $0 \leq i<$ $j \leq \lambda-1$. We argue that $C^{L}=c_{i} \wedge c_{j} \neq 0$. Otherwise, $c_{i} \wedge c_{j}=$ 0 . Therefore, there exists a column r in D, such $D_{i r}=0$ and $D_{j r}=1$ or $D_{i r}=1$ and $D_{j r}=0$. Since all the columns of D are in the set F, thus the column $D_{\cdot r}$ must be in the set Y. However, based on the definition of representative compatible column pattern set, each element W in the set Y satisfies that for the $L \in P_{2}$, the situation that $W_{i}=0$ and $W_{j}=1$ or $W_{i}=1$ and $W_{j}=0$ does not happen. Therefore, the column $D_{\cdot r}$ does not belong to the set Y. We get a contradiction. Thus, for any $L \in P_{2}$, we have $C^{L} \neq 0$.

Since the given intersection pattern satisfies the conditions of Theorem 7, then, based on Theorem 7, we have that for any $\Gamma \in Z$, $C^{\Gamma}=0$ and for any $\Gamma \in P, C^{\Gamma} \neq 0$. Thus, for all these $\Gamma \in Z$, $V\left(C^{\Gamma}\right)=v_{\Gamma}=0$.

Now consider any $L \in P$. When $L=0$, it is not hard to see that the total number of columns in D is n.
For any $L \in P$ and $L>0, L$ can be represented as $L=$ $\sum_{j=0}^{r-1} 2^{l_{j}}$, where $1 \leq r \leq \lambda$ and $0 \leq l_{0}<\cdots<l_{r-1} \leq \lambda-1$.

Since $C^{L} \neq 0$, the number of $*$'s in the cube-variable row vector C^{L} is the number of columns in D, whose entries on the row $l_{0}, l_{1}, \ldots, l_{r-1}$ are all $*$'s. Note that for any $0 \leq \Gamma \leq 2^{\lambda}-1$, the column pattern ψ_{Γ} has all entries on the row $l_{0}, l_{1}, \ldots, l_{r-1}$ being $*$'s if and only if $\Gamma \succeq L$. Since the root column vector of $\delta_{\Gamma, i}$ is ψ_{Γ}, thus for any $\Gamma \in M$ and any $0 \leq i \leq\left|Y_{\Gamma}\right|-1$, the column pattern $\delta_{\Gamma, i}$ has all entries on the row $l_{0}, \overline{l_{1}}, \ldots, l_{r-1}$ being $*$'s if and only if $\Gamma \succeq L$. Therefore, the number of columns in D, whose entries on the row $l_{0}, l_{1}, \ldots, l_{r-1}$ are all $*$'s, is

$$
\begin{aligned}
& \sum_{\substack{\Gamma \in \bar{M}: \\
\Gamma \succeq L}} z_{\Gamma}+\sum_{\substack{\Gamma \in M: \\
\Gamma \succeq L}}\left(z_{\Gamma}-\sum_{i=0}^{\left|Y_{\Gamma}\right|-1} w_{\Gamma, i}\right)+\sum_{\substack{\Gamma \in M: \\
\Gamma \succeq L}} \sum_{i=0}^{\left|Y_{\Gamma}\right|-1} w_{\Gamma, i} \\
& =\sum_{0 \leq \Gamma \leq 2^{\lambda}-1: \Gamma \succeq L} z_{\Gamma}=k_{L} .
\end{aligned}
$$

Therefore, the number of $*$'s in the row vector C^{L} is k_{L}. Since $C^{L} \neq 0$, by Lemma $1, V\left(C^{L}\right)=2^{k_{L}}$. Thus, for any $L \in P$ and $L>0, V\left(C^{L}\right)=2^{k_{L}}=v_{L}$.
In summary, the matrix D has n columns and for any $1 \leq \Gamma \leq$ $2^{\lambda}-1, V\left(C^{\Gamma}\right)=v_{\Gamma}$. Thus, the matrix D satisfies the given intersection pattern.

Comment: The above proof provides a way of synthesizing a cubevariable matrix to satisfy the given intersection pattern when the three conditions are all satisfied.

Example 6

In a 3 -cube intersection problem on 4 variables x_{0}, \ldots, x_{3}, suppose that the intersection pattern is given as

$$
v_{1}=4, v_{2}=4, v_{3}=0, v_{4}=4, v_{5}=1, v_{6}=2, v_{7}=0
$$

First, it is not hard to check that both Statement 1 and Statement 2 in Theorem 10 hold for the given pattern.

By convention, $v_{0}=2^{4}=16$. Therefore, we have

$$
\begin{aligned}
& P=\{0,1,2,4,5,6\}, \quad Z=\{3,7\} \\
& k_{0}=4, k_{1}=2, k_{2}=2, k_{4}=2, k_{5}=0, k_{6}=1
\end{aligned}
$$

For the given intersection pattern, we have $Z_{2}=\{3\}$ and $\rho_{3}=$ $\left\{(01 *)^{T}\right\}$.
Thus, $Y=\left\{(01 *)^{T}\right\}, M=\{4\}$ and $Y_{4}=\left\{(01 *)^{T}\right\}$. Thus, $\delta_{4,0}=(01 *)^{T}$.

The system of equations (7) in this example is

$$
\begin{align*}
& \tilde{z}_{0}+\tilde{z}_{1}+\tilde{z}_{2}+\tilde{z}_{3}+\tilde{z}_{3}+\tilde{z}_{4}+\tilde{z}_{6}+\tilde{z}_{7}=4, \\
& \tilde{z}_{1}+\tilde{z}_{3}+\tilde{z}_{5}+\tilde{z}_{7}=2, \quad \tilde{z}_{2}+\tilde{z}_{3}+\tilde{z}_{6}+\tilde{z}_{7}=2, \tag{8}\\
& \tilde{z}_{4}+\tilde{z}_{5}+\tilde{z}_{6}+\tilde{z}_{7}=2, \quad \tilde{z}_{5}+\tilde{z}_{7}=0, \quad \tilde{z}_{6}+\tilde{z}_{7}=1 . \\
& \tilde{w}_{4,0} \leq \tilde{z}_{4}, \quad \tilde{w}_{4,0} \geq 1
\end{align*}
$$

The above system of equations (8) has a non-negative solution
$\tilde{z}_{1}=\tilde{z}_{3}=\tilde{z}_{4}=\tilde{z}_{6}=1, \tilde{z}_{0}=\tilde{z}_{2}=\tilde{z}_{5}=\tilde{z}_{7}=0, \tilde{w}_{4,0}=1$.
Thus, Statement 3 in Theorem 10 also holds. Therefore, there exists a cube-variable matrix to satisfy the given intersection pattern. Based on the proof of Theorem 10, we can synthesize a cubevariable matrix that satisfies the given intersection pattern based on the above non-negative solution as

$$
\left[\begin{array}{llll}
* & * & 0 & 1 \\
1 & * & 1 & * \\
1 & 1 & * & *
\end{array}\right]
$$

and the corresponding cubes are $c_{0}=\bar{x}_{2} \wedge x_{3}, c_{1}=x_{0} \wedge x_{2}$, and $c_{2}=x_{0} \wedge x_{1}$. It is not hard to verify that the set of cubes c_{0}, c_{1}, c_{2} satisfies the given intersection pattern.

5. IMPLEMENTATION

In this section, we will discuss the implementation of the procedure to solve the λ-cube intersection problem, based on the theories in Section 4.

5.1 Checking Statement 1 in Theorem 10

For Statement 1 in Theorem 10, we can represent it in an alternative way, which is shown by the following theorem.

Theorem 11

The following two statements are equivalent:

1. The intersection pattern $\left(v_{1}, \ldots, v_{2^{\lambda}-1}\right)$ satisfies that for any $1 \leq L \leq 2^{\lambda}-1$, if $v_{L}>0$, then for any $1 \leq \Gamma \leq 2^{\lambda}-1$ such that $L \succeq \Gamma, v_{\Gamma}>0$.
2. The intersection pattern $\left(v_{1}, \ldots, v_{2^{\lambda}-1}\right)$ satisfies that for any $2 \leq k \leq \lambda$ and any $L \in P_{k}$, if $1 \leq \Gamma \leq 2^{\lambda}-1$ satisfies that $B \overline{(\Gamma)}=k-1$ and $L \succeq \Gamma$, then $\overline{v_{\Gamma}}>\overline{0}$. \square

Based on Theorem 11, in order to check whether Statement 1 in Theorem 10 holds, we only need to check whether Statement 2 in Theorem 11 holds. Thus, whether Statement 1 in Theorem 10 holds can be checked by the procedure shown in Algorithm 1.

```
Algorithm 1 CheckRuleOne \((\lambda, v)\) : the procedure to check whether State-
ment 1 in Theorem 10 holds. It returns 1 if the statement holds; otherwise,
it returns 0 .
    : \{Given an integer \(\lambda \geq 1\) and a non-negative integer array \(v=\)
    \(\left(v_{1}, \ldots, v_{2^{\lambda}-1}\right)\).\}
    for \(i \Leftarrow 1\) to \(\lambda\) do
        \(P_{i} \Leftarrow\left\{\Gamma \mid 0 \leq \Gamma \leq 2^{\lambda}-1, B(\Gamma)=i\right.\), and \(\left.v_{\Gamma}>0\right\} ;\)
    for \(i \Leftarrow 2\) to \(\lambda\) do
        for all \(L \in P_{i}\) do
            for all \(1 \leq \Gamma \leq 2^{\lambda}-1\) s.t. \(L \succeq \Gamma\) and \(B(\Gamma)=i-1\) do
            if \(v_{\Gamma}=0\) then return 0 ;
    return 1 ;
```


5.2 Checking Statement $\mathbf{2}$ in Theorem 10

Whether Statement 2 in Theorem 10 holds can be checked by representing the given intersection pattern by an undirected graph and listing all maximal cliques of the undirected graph.

For a given intersection pattern on λ cubes, we can construct an undirected graph $G(N, E)$ from that pattern, where N is a set of λ nodes $n_{0}, \ldots, n_{\lambda-1}$ and E is a set of edges. There is an edge between the node n_{i} and $n_{j}(0 \leq i<j \leq \lambda-1)$ if and only if the number $\left(2^{i}+2^{j}\right)$ is in the set P_{2}.

For example, we can represent the intersection pattern shown in Example 3 by the undirected graph shown in Figure 1.

Figure 1: An undirected graph constructed from the intersection pattern of Example 3.

In graph theory, a clique in an undirected graph $G(N, E)$ is defined as a subset Q of the node set N, such that for every two nodes in Q, there exists an edge connecting the two. A maximal clique is a clique that cannot be extended by including one more adjacent node.
For an intersection pattern, if a set of $r(3 \leq r \leq \lambda)$ numbers $0 \leq l_{0}<\cdots<l_{r-1} \leq \lambda-1$ satisfies that for any $0 \leq i<j \leq$ $r-1, v_{\left(2^{l_{i}+2^{l} j}\right)}>0$, then, the set of nodes $n_{l_{0}}, \ldots, n_{l_{r-1}}$ forms a clique of the undirected graph constructed from the intersection pattern. Thus, Statement 2 in Theorem 10 can be stated in another way as: For any clique $Q=\left\{n_{l_{0}}, \ldots, n_{l_{r-1}}\right\}$ of size r in the undirected graph constructed from the intersection pattern, where $3 \leq r \leq \lambda$ and $0 \leq l_{0}<\cdots<l_{r-1} \leq \lambda-1$, the number $v_{L}>0$, where $L=\sum_{i=0}^{r-1} 2^{l_{i}}$. In fact, it is not hard to see that if Statement 1 in Theorem 10 holds, then Statement 2 in Theorem 10 holds if and only if for any maximal clique $Q^{*}=\left\{n_{d_{0}}, \ldots, n_{d_{t-1}}\right\}$ of size t in the undirected graph constructed from the intersection pattern,

```
Algorithm 2 CheckRuleTwo \((\lambda, v)\) : the procedure to check whether
Statement 2 in Theorem 10 holds under the assumption that Statement 1
in Theorem 10 holds. It returns 1 if the statement holds; otherwise, it re-
turns 0 .
1: \{Given an integer \(\lambda \geq 1\) and a non-negative integer array \(v=\)
    \(\left(v_{1}, \ldots, v_{2^{\lambda}-1}\right)\).\}
    \(N \Leftarrow\left\{n_{0}, \ldots, n_{\lambda-1}\right\} ; E \Leftarrow \phi ;\)
    for \(i \Leftarrow 0\) to \(\lambda-1\) do
        for \(j \Leftarrow i+1\) to \(\lambda-1\) do
            if \(v_{\left(2^{i}+2^{j}\right)}>0\) then \(E \Leftarrow E \cup\left\{e\left(n_{i}, n_{j}\right)\right\}\)
    for all maximal clique \(Q\) in the graph \(G(N, E)\) do
        \(L \Leftarrow \sum_{i: n_{i} \in Q} 2^{i} ;\)
        if \(v_{L}=0\) then return 0
    return 1
```

where $3 \leq t \leq \lambda$ and $0 \leq d_{0}<\cdots<d_{t-1} \leq \lambda-1$, the number $v_{L^{*}}>0$, where $L^{*}=\sum_{i=0}^{t-1} 2^{d_{i}}$. Therefore, whether Statement 2 in Theorem 10 holds can be answered by checking whether all v_{L} 's corresponding to all maximal cliques in the undirected graph $G(N, E)$ are greater than zero. The problem of listing all maximal cliques in an undirected graph is a classical problem in graph theory and can be solved, for example, by the Born-Kerbosch algorithm [5].
Assuming that Statement 1 in Theorem 10 holds, then whether Statement 2 in Theorem 10 holds can be checked by the procedure shown in Algorithm 2.

5.3 Checking Statement 3 in Theorem 10

The following theorem shows that to check whether the system of equations (7) has a non-negative solution, we only need to check whether an alternative system of equations with fewer unknowns has a non-negative solution.

Theorem 12

The system of equations (7) has a non-negative integer solution if and only if the system of equations on unknowns \hat{z}_{Γ} (for all $\Gamma \in$ $\bar{M})$ and $\hat{w}_{\Gamma, i}\left(\right.$ for all $\Gamma \in M$ and $\left.0 \leq i \leq\left|Y_{\Gamma}\right|-1\right)$

$$
\begin{equation*}
\sum_{\Gamma \in \bar{M}, \Gamma \succeq L} \hat{z}_{\Gamma}+\sum_{\Gamma \in M, \Gamma \succeq L} \sum_{\substack{ \\\Gamma \in M, 0 \leq i \leq\left|Y_{\Gamma}\right|-1: \\ \delta_{\Gamma, i} \in \rho_{L}}}^{\left|Y_{\Gamma}\right|-1} \hat{w}_{\Gamma, i}=k_{L}, \text { for all } L \in P \tag{9}
\end{equation*}
$$

has a non-negative integer solution. \square
Due to space constraints, we omit the proof here.
Based on Theorem 12, to check whether Statement 3 in Theorem 10 holds, we only need to check whether the system of equations (9) has a non-negative solution. Note that the system of equations (9) has $|M|$ fewer unknowns and $|M|$ fewer inequalities than the original system of equations (7). Thus, a certain amount of computation will be saved.

5.4 The Procedure to Solve the λ-Cube Intersection Problem

Based on the above discussion, we give the procedure to solve the λ-cube intersection problem in Algorithm 3. In the procedure, the function CheckRuleOne (λ, v) and the function CheckRuleTwo (λ, v) are shown in Algorithm 1 and 2, respectively. The function $\operatorname{RCCPS}\left(\Gamma, \lambda, P_{2}\right)$ returns the representative compatible column pattern set for a $\Gamma \in Z_{2}$. The function
$\operatorname{SetEqn}\left(P, Z_{2}, M, \bar{M},\left\{k_{L} \mid L \in P\right\},\left\{\rho_{L} \mid L \in Z_{2}\right\},\left\{Y_{L} \mid L \in M\right\}\right)$
returns the matrices $A_{z e}, A_{w e}, A_{w}$ and the column vectors b_{e} and b in the matrix representation of the system of equations (9), which is

$$
\left\{\begin{array}{l}
A_{z e} \vec{z}+A_{w e} \vec{w}=b_{e}, \tag{10}\\
A_{w} \vec{w} \geq b,
\end{array}\right.
$$

where \vec{z} is a column vector of unknowns \hat{z}_{Γ}, for all $\Gamma \in \bar{M}$, and \vec{w} is a column vector of unknowns $\hat{w}_{\Gamma, i}$, for all $\Gamma \in M$ and $0 \leq$ $i \leq\left|Y_{\Gamma}\right|-1$. The function NonNegSln $\left(A_{z e}, A_{w e}, b_{e}, A_{w}, b\right)$ finds a non-negative integer solution to the system of equations (10). If the system of equations (10) has a non-negative integer solution, then the function returns one; otherwise, it returns ϕ. Given a non-negative solution (\vec{z}, \vec{w}) to the system of equations (10), the function $\operatorname{SynCubes}(\vec{z}, \vec{w}, \lambda)$ synthesizes a set of λ cubes from that solution based on the proof of Theorem 10.

```
Algorithm 3 CubePattern \((n, \lambda, v)\) : the procedure to check whether there
exists a set of \(\lambda\) cubes on \(n\) variables to satisfy the given intersection pattern
\(v=\left(v_{1}, \ldots, v_{2^{\lambda}-1}\right)\). If the answer is yes, the procedure returns a set of
cubes that satisfies the intersection pattern; otherwise, it returns \(\phi\)
    \{Given integers \(n \geq 1, \lambda \geq 1\), and a non-negative integer array \(v=\)
    \(\left(v_{1}, \ldots, v_{2^{\lambda}-1}\right)\), where \(v_{\Gamma} \in\left\{0,2^{0}, 2^{1}, \ldots 2^{n}\right\}\).\}
    \(P \Leftarrow \phi ; Z \Leftarrow \phi ;\)
    for \(i \Leftarrow 1\) to \(2^{\lambda}-1\) do
        if \(v_{\Gamma}>0\) then \(P \Leftarrow P \cup\{\Gamma\} ; k_{\Gamma} \Leftarrow \log _{2} v_{\Gamma}\);
        else \(Z \Leftarrow Z \cup\{\Gamma\} ;\)
    if CheckRuleOne \((\lambda, v)=0\) then return \(\phi\);
    f CheckRuleTwo \((\lambda, v)=0\) then return \(\phi\)
    \(P_{2} \Leftarrow\left\{\Gamma \mid 0 \leq \Gamma \leq 2^{\lambda}-1, B(\Gamma)=2\right.\), and \(\left.v_{\Gamma}>0\right\} ;\)
    \(Z_{2} \Leftarrow\left\{\Gamma \mid 0 \leq \Gamma \leq 2^{\lambda}-1, B(\Gamma)=2\right.\), and \(\left.v_{\Gamma}=0\right\} ;\)
    for all \(\Gamma \in \bar{Z}_{2} \mathbf{d o} \rho_{\Gamma}=\operatorname{RCCPS}\left(\Gamma, \lambda, P_{2}\right)\);
    \(Y \Leftarrow \bigcup_{\Gamma \in Z_{2}} \rho_{\Gamma} ;\)
    \(M \Leftarrow\left\{\Gamma \mid 0 \leq \Gamma \leq 2^{\lambda}-1\right.\), s.t. \(\exists W \in Y\) s.t. \(\left.t(W)=\psi_{\Gamma}\right\} ;\)
    \(\bar{M} \Leftarrow\left\{\Gamma \mid 0 \leq \Gamma \leq 2^{\lambda}-1, \Gamma \notin M\right\} ;\)
    for all \(\Gamma \in \bar{M}\) do \(\bar{Y}_{\Gamma} \Leftarrow\left\{W \mid W \in Y\right.\) and \(\left.t(W)=\psi_{\Gamma}\right\}\);
    \(\left(A_{z e}, A_{w e}, b_{e}, A_{w}, b\right) \Leftarrow \operatorname{SetEqn}\left(P, Z_{2}, M, \bar{M}\right.\)
        \(\left.\left\{k_{L} \mid L \in P\right\},\left\{\rho_{L} \mid L \in Z_{2}\right\},\left\{Y_{L} \mid L \in M\right\}\right)\)
    \((\vec{z}, \vec{w}) \Leftarrow \operatorname{NonNegSln}\left(A_{z e}, A_{w e}, b_{e}, A_{w}, b\right)\).
    if \((\vec{z}, \vec{w})=\phi\) then return \(\phi\);
    return \(\operatorname{SynCubes}(\vec{z}, \vec{w}, \lambda)\);
```


6. CONCLUSION

In this paper, we introduced a new problem, the λ-cube intersection problem: Given a set of numbers corresponding to an intersection pattern of a set of λ cubes, we are asked to synthesize a set of cubes to satisfy the given intersection pattern, or prove that there is no such a solution to the problem. We provide a rigorous mathematic treatment to this problem and derive a necessary and sufficient condition for the existence of a set of cubes to satisfy the given intersection pattern. The problem reduces to two subproblems of listing all maximal cliques in an undirected graph and checking whether a set of linear equalities and inequalities has a non-negative integer solution. As a future work, we will use the algorithm presented to solve the λ-cube intersection problem as a subroutine to solve our more broader problem of synthesizing combinational logic for probabilistic computation

7. REFERENCES

[1] R. K. Brayton, C. McMullen, G. D. Hachtel, and A. Sangiovanni-Vincentelli, Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.
[2] R. L. Rudell and A. Sangiovanni-Vincentelli, "Multiple-valued minimization for PLA optimization," IEEE Transactions on Computer-Aided Design, vol. 6, no. 5, pp. 727-750, 1987.
[3] W. Qian, M. D. Riedel, K. Barzagan, and D. Lilja, "The synthesis of combinational logic to generate probabilities," in International Conference on Computer-Aided Design, 2009, pp. 367-374.
[4] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli, "Multilevel logic synthesis," Proceedings of the IEEE, vol. 78, no. 2, pp. 264-300, 1990.
[5] C. Born and J. Kerbosch, "Algorithm 457: Finding all cliques of an undirected graph," Communications of the ACM, vol. 16, no. 9, pp. 575-577, 1973.

[^0]: *This work is supported by the grant No. 2003-NT-1107 from the SRC Focus Center Research Program on Functional Engineered Nano-Architectonics (FENA) and by the NSF CAREER award grant No. 0845650.

