
Synthesizing Logic with Percolation in Nanoscale Lattices

MUSTAFA ALTUN, University of Minnesota
MARC D. RIEDEL, University of Minnesota

This paper proposes a novel probabilistic framework for digital computation with lattices of nanoscale switches based on
the mathematical phenomenon of percolation. With random connectivity, percolation gives rise to a sharp non-linearity in
the probability of global connectivity as a function of the probability of local connectivity. This phenomenon is exploited to
compute Boolean functions robustly, in the presence of defects. It is shown that the margins, defined in terms of the steepness
of the non-linearity, translate into the degree of defect tolerance. Achieving good margins entails a mapping problem. Given
a target Boolean function, the problem is how to assign literals to regions of the lattice such that there are no diagonal paths
of 1’s in any assignment that evaluates to 0. Assignments with such paths result in poor error margins due to stray, random
connections that can form across the diagonal. A necessary and sufficient condition is formulated for a mapping strategy that
preserves good margins: the top-to-bottom and left-to-right connectivity functions across the lattice must be dual functions.
Based on lattice duality, an efficient algorithm to perform the mapping is proposed. The algorithm optimizes the lattice area
while meeting prescribed worst-case margins. Its effectiveness is demonstrated on benchmark circuits.

Categories and Subject Descriptors: B.6 [Logic Design]: General

General Terms: Design, Reliability

Additional Key Words and Phrases: Percolation, defect tolerance, duality, Boolean functions

1. INTRODUCTION
As current CMOS-based technology is approaching its anticipated limits, research is shifting to

novel forms of nanoscale technologies including molecular-scale self-assembled systems [White-
sides and Grzybowski 2002; Yan et al. 2003]. Unlike conventional CMOS that can be patterned
in complex ways with lithography, self-assembled systems generally consist of regular structures
such as crossbar arrays [Ziegler and Stan 2003; Zomaya 2006]. In particular, with self-assembly,
nanoscale technologies are often characterized by high defect rates. A variety of techniques have
been proposed for mitigating against defects [Huang et al. 2004; Kuekes et al. 2005; Sun and Zhang
2006; Hogg and Snider 2007; Snider and Williams 2007].

In prior work, we discussed strategies for implementing Boolean functions with lattices of four-
terminal switches [Altun and Riedel 2010; 2011]. We addressed the synthesis problem of how best
to assign literals to switches in a lattice in order to implement a given target Boolean function, with
the goal of minimizing the lattice size, measured in terms of the number of switches. We presented
an efficient synthesis algorithm for this task. The algorithm has polynomial time complexity (signif-
icantly, it does not exhaustively enumerate paths). It produces lattices with a size that grows linearly
with the number of products of the target Boolean function.

In this paper, we address the problem of implementing Boolean functions with lattices of four-
terminal switches in the presence of defects. We assume that such defects occur probabilistically.
Although not tied to any particular technology, our model could be applicable for emerging tech-
nologies such as nanowire crossbar arrays [Cui and Lieber 2001] and magnetic switch-based struc-
tures [Khitun et al. 2008].

Our approach is predicated on the mathematical phenomenon of percolation. With random con-
nectivity, percolation gives rise to a sharp non-linearity in the probability of global connectivity as
a function of the probability of local connectivity. We exploit this phenomenon to compute Boolean
functions robustly, within prescribed error margins.

• This work is supported by an NSF CAREER award 0845650.
• A preliminary version of this paper appeared in [Altun et al. 2009].
• Author’s addresses: M. Altun and M. Riedel, Electrical and Computer Engineering, University of Minnesota, 200 Union
St S.E., Minneapolis, Minnesota 55455.

1

The paper is organized as follows. In Section 1.1, we discuss our circuit model. In Section 1.2,
we discuss our defect model. In Section 1.3, we discuss the mathematics of percolation and how this
phenomenon can be exploited for tolerating defects. In Section 2, we discuss potential technologies
that fit our model. In Section 3, we present our main technical result: a method for assigning Boolean
literals to sites in a switching lattice that optimizes the lattice area while meeting prescribed defect
tolerances. In Section 4, we evaluate our method on benchmark circuits.

1.1. Circuit Model
Our circuit model consists of regular two-dimensional arrays of four-terminal switches. A four-

terminal switch is shown in the top part of Figure 1. It has two states, ON and OFF, that are controlled
by a Boolean literal. If the literal takes the value 1 then the four ends of the switch are mutually con-
nected – the switch is ON. If the literal takes the value 0 then the four ends of the switch are mutually
disconnected – the switch is OFF. A network of four-terminal switches is shown in Figure 1(b). The
Boolean function for the network evaluates to 1 iff there is a closed path between the top and bottom
plates of the lattice. It can be computed by taking the sum (OR) of the product (AND) of literals
along each path. These paths are x1 − x2 − x3, x1 − x2 − x5 − x6, x4 − x5 − x2 − x3, and
x4 − x5 − x6.

x4

x5

x6

x1

x2

x3

Fig. 1. (a): Four-terminal switch with its ON and OFF states. (b): Four-terminal switching network imple-
menting the Boolean function x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6.

1.2. Defects and Defect Tolerance
We assume that defects cause switches to fail in one of two ways: they are ON when they are

supposed to be OFF, i.e., the controlling literal is 0; or they are OFF when they are supposed to be
ON, i.e., the controlling literal is 1. We assume that switches can fail in one of these two ways, or
both. As we discuss in Section 3.2, we allow for different defect rates in both directions, ON-to-OFF
and OFF-to-ON. Crucially, we assume that all switches fail with independent probability.

Defective switches can ruin the Boolean computation performed by a network. Consider the
networks shown in Figure 2. The network in Figure 2(a) consists of a single switch. The networks
in Figure 2(b) and Figure 2(c) consist of a pair of switches in series and in parallel, respectively. All
switches are controlled by the literal x1. Obviously, in each of these networks, the top and bottom
plates are connected when x1 = 1 and disconnected when x1 = 0. Therefore they implement the
function f = x1.

Note that the three networks are not identical in their defect-tolerance capability. Suppose that
exactly one switch in each network is defective when x1 = 1 and exactly one is defective when
x1 = 0. When x1 = 1, the networks in Figure 2(a) and Figure 2(b) compute the wrong value of
f = 0; however, the network in Figure 2(c) computes the correct value f = 1. Similarly, when

2

x1 = 0, the networks in Figure 2(a) and Figure 2(c) compute the wrong value of f = 1. However,
the network in Figure 2(b) computes the correct value of f = 0. So the series and parallel networks
in Figures 2(b) and 2(c) each tolerate up to one defective switch, but they tolerate different defect
types. None of these networks tolerates defects for both cases x1 = 1 and x1 = 0.

Fig. 2. Switching networks

Now consider the network in Figure 3. Compared to the networks in Figure 2, it has more
switches. We expect that it will be superior in terms of its defect tolerance, for both the cases x1 = 1
and x1 = 0. But what is the relationship between the amount of redundancy and the defect tolerance
that is achieved? As we discuss in Section 1.3, the relationship is non-linear. The explanation hinges
on percolation.

Throughout the rest of the paper, we will use a lattice representation. White and black sites rep-
resent OFF and ON switches, respectively. If x1 = 1, each four-terminal switch is ideally ON and
represented by a black site. If x1 = 0, each four-terminal switch is ideally OFF and represented by
a white site. Due to defects, not all switches will behave in this way. Defective switches are repre-
sented by white and black sites while the switch is supposed to be ON and OFF, respectively. This
is illustrated in Figure 3. Note that in spite of defects, the network in Figure 3 computes correctly
for both the cases x1 = 0 and x1 = 1.

x1x1x1

x1x1x1

x1x1x1

x 1=

x1=

Fig. 3. Switching network with defects.

3

1.3. Percolation
Percolation theory is a rich mathematical topic that forms the basis of explanations of physical

phenomena such as diffusion and phase changes in materials. It tells us that in media with ran-
dom local connectivity, there is a critical threshold for global connectivity: below the threshold, the
probability of global connectivity quickly drops to zero; above it, the probability quickly rises to
one.

Broadbent and Hammersley described percolation with the following metaphorical
model [Broadbent and Hammersley 1957]. Suppose that water is poured on top of a large
porous rock. Will the water find its way through holes in the rock to reach the bottom? We can
model the rock as a collection of small regions each of which is either a hole or not a hole. Suppose
that each region is a hole with independent probability p1 and not a hole with probability 1 − p1.
The theory tells us that if p1 is above a critical value pc, the water will always reach the bottom;
if p1 is below pc, the water will never reach the bottom. The transition in the probability of water
reaching bottom as a function of increasing p1 is extremely abrupt. For an infinite size rock, it is a
step function from 0 to 1 at pc.

In two dimensions, percolation theory can be studied with a lattice, as shown in Figure 4(a). Here
each site is black with probability p1 and white with probability 1 − p1. Let p2 be the probability
that a connected path of black sites exists between the top and bottom plates. Figure 4(b) shows the
relationship between p1 and p2 for different square lattice sizes. Percolation theory tells us that with
increasing lattice size, the steepness of the curve increases. (In the limit, an infinite lattice produces
a perfect step function.) Below the critical probability pc, p2 is approximately 0 and above it p2 is
approximately 1.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

pc

p1

p 2

BOTTOM

TOP

Fig. 4. (a): Percolation lattice with random connections; there is a path of black sites between the top and
bottom plates. (b) p2 versus p1 for 1 × 1, 2 × 2, 6 × 6, 24 × 24, 120 × 120, and infinite-size lattices.

Suppose that each site of a percolation lattice is a four-terminal switch controlled by the same
literal x1. Also suppose that each switch is independently defective with the same probability. De-
fective switches are represented by white and black sites while the switch is supposed to be ON and
OFF, respectively. Let’s analyze the cases x1 = 0 and x1 = 1. If x1 = 0 then each site is black with
the defect probability, and the defective black sites might cause an error by forming a path between
the top and bottom plates. In this case, p1 and p2 described in the percolation model correspond
to the defect probability and the probability of an error in top-to-bottom connectivity, respectively.

4

If x1 = 1 then each site is white with the defect probability and the defective white sites might
cause an error by destroying the connection between the top and bottom plates. In this case, p1 and
p2 in the percolation model correspond to 1−(defect probability) and 1−(probability of an error in
top-to-bottom connectivity), respectively. The relationship between p1 and p2 is shown in Figure 5.

0.0 0.2 0.4 0.6 0.8 1.0
 - Probability of local connectivity

0.0

0.2

0.4

0.6

0.8

1.0

- P

ro
ba

bi
lit

y
of

 g
lo

ba
l c

on
ne

ct
iv

ity

ZERO-MARGIN

p1

p 2

ONE-MARGIN

Fig. 5. Non-linearity through percolation in random media.

1.4. Definitions
Throughout the paper, we use the concept of defect probability and defect rate interchangeably.

We assume that the lattice is large enough for this to hold true.

Definition 1 We define the one margin and zero margin to be the ranges of p1 for which we inter-
pret p2 as unequivocally 1 and 0, respectively.

The percolation curve shown in Figure 5 tells us that unless the defect probability exceeds a
zero margin (one margin), we achieve robust connectivity: the top and bottom plates remain dis-
connected (connected) with high probability. Therefore the one margin and zero margin are the
indicators of defect tolerance while the lattice’s top and bottom plates are connected and discon-
nected, respectively. In other words, the margins are the maximum defect probabilities (rates) that
can be tolerated. For example, suppose that a network has 5% zero and one margins. This means
that the network will successfully tolerate defects unless the defect probability (rate) exceed 5%.

What follows are some standard definitions from the field of logic synthesis. We will use these
terms in Sections 3.

Definition 2 Consider k independent Boolean variables, x1, x2, . . . , xk. Boolean literals are
Boolean variables and their complements, i.e., x1, x̄1, x2, x̄2, . . . , xk, x̄k.

Definition 3 A product (P) is an AND of literals, e.g., P = x1x̄3x4. A sum-of-products (SOP)
expression corresponds to an OR of products.

Definition 4 A prime implicant (PI) of a Boolean function f is a product that implies f such that
removing any literal from the product results in a new product that does not imply f.

5

Definition 5 An irredundant sum-of-products (ISOP) expression is an SOP expression, where
each product is a PI, and no PI can be deleted without changing the Boolean function f represented
by the expression. Among the SOPs for f , one with the minimum number of products is a minimum
sum-of-products (MSOP) expression.

Definition 6 f and g are dual Boolean functions iff

f(x1, x2, . . . , xk) = ḡ(x̄1, x̄2, . . . , x̄k).

A dual of a function also can be obtained by interchanging AND and OR operations as well as the
constants 0 and 1. For example, if f = x1x2 + x̄1x3 then fD = (x1 +x2)(x̄1 +x3). Another trivial
example is that for f = 1 the dual is fD = 0.

2. APPLICABLE TECHNOLOGIES
The main contributions of this paper are conceptual. Our circuit and defect models are simple and

broadly applicable to different types of emerging technologies. A schematic for the realization of
our circuit model is shown in Figure 6. Each site of the lattice is a four-terminal switch, controlled by
an input voltage. When a high (logic 1) or low (logic 0) voltage is applied, the switch is ON or OFF,
respectively. The output of the circuit depends upon the top-to-bottom connectivity across the lattice.
If the top and bottom plates are connected, then the lattice allows signals to flow; accordingly, the
output is logic 1. Otherwise the output is logic 0. One can sense the output with a resistor connected
to the bottom plate while a high voltage applied to the top plate. Below, we discuss two potential
technologies that fit this circuit model.

Fig. 6. 3D realization of our circuit model with the inputs and the output.

In their seminal work, Yi Cui and Charles Lieber investigated crossbar structures for different
types of nanowires including n-type and p-type nanowires [Cui and Lieber 2001]. They achieved
the different types of junctions by crossing different types of nanowires.

By crossing an n-type nanowire and a p-type nanowire, they achieved a diode-like junction. By
crossing two n-types or twop-types, they achieved a resistor-like junction (with a very low resis-
tance value). They showed that the connectivity of nanowires can be controlled by an insulated
input voltage V -in. A high V -in makes the p-type nanowires conductive and the n-type nanowires
resistive; a low V -in makes the p-type nanowires resistive and the n-type nanowires conductive. So
they showed that, based on a controlling voltage, nanowires can behave either like short circuits or
like open circuits.

Cui and Lieber implemented a four-terminal device with crossed n- and p-type nanowires, illus-
trated in Figure 7(a). The device works as follows. When a high V -in is applied, a p-type nanowire
(green) behaves like a short circuit, so the N and S terminals are connected, and an n-type nanowire
(red) behaves like an open circuit, so the W and E terminals are disconnected. When a low V -in is
applied, a p-type nanowire behaves like an open circuit, so the N and S terminals are disconnected,
and an n-type nanowire behaves like a short circuit, so the W and E terminals are connected.

6

One could easily implement a four-terminal switch with similar techniques, as illustrated in Fig-
ure 7(b). Here the switch has crossed p-type nanowires. When a high V -in is applied, the nanowires
behave like short circuits. Also a resistor-like junction is formed between them, meaning that the
nanowires are connected through a low-valued resistor. Thus, all the four-terminals are connected;
the switch is ON. When a low V -in is applied, the nanowires behave like open circuits. Thus, all
the four-terminals are disconnected; the switch is OFF. The result is a four-terminal switch that
corresponds to our model.

Metal
Insulator

V-in

N

S

W E

Metal
Insulator

V-in

N

S

W E

 (a) (b)

Fig. 7. Nanowire four-terminal devices.

Nanowire switches, of course, would be assembled in large arrays. Indeed, the impetus for
nanowire-based technology is the potential density, scalability and manufacturability [Huang et al.
2001; Luo et al. 2002; DeHon 2005]. Consider a p-type nanowire array, where each crosspoint is
controlled by an input voltage. From the discussion above, we know that each such crosspoint be-
haves like a four-terminal switch. Accordingly, the nanowire crossbar array can be modelled as a
lattice of four-terminal switches as illustrated in Figure 8. Here the black and white sites represent
crosspoints that are ON and OFF, respectively.

Fig. 8. Nanowire crossbar array with random connections and its lattice representation.

Many other novel and emerging technologies fit the general model of four-terminal switches. For
instance, researcher are investigating spin waves [Eshaghian-Wilner et al. 2006]. Unlike conven-
tional circuitry such as CMOS that transmits signals electrically, spin-wave technology transmits
signals as propagating disturbances in the ordering of magnetic materials. Potentially, spin-wave
based logic circuits could compute with significantly less power than conventional CMOS circuitry.

Spin wave switches are four-terminal devices, as illustrated in Figure 9. They have two states
ON and OFF, controlled by an input voltage V-in. In the ON state, the switch transmits all spin
waves; all the four-terminals are connected. In the OFF state the switch reflects any incoming spin
waves; all the four-terminals are disconnected. Spin-wave switches, like nanowire switches, are also
configured in crossbar networks [Khitun et al. 2008].

7

Fig. 9. Spin-wave switch.

3. LOGIC SYNTHESIS THROUGH PERCOLATION
We implement Boolean functions with a single lattice of four-terminal switches, as illustrated in

Figure 10. There areR×C regions r11, . . . , rRC in the lattice. Each region hasN×M four-terminal
switches. We assign Boolean literals x1, x̄1, x2, x̄2, . . . , xk, x̄k to regions as controlling inputs. If an
input literal is logic 1 then all switches in the corresponding region are ideally ON; if the literal is
logic 0 then all switches in the corresponding region are ideally OFF. This is illustrated in Figure 11.

r11

rRCrR1

r12 r1C

rR2

r(R-1)1

r21

r1(C-1)

r2C

r(R-1)C

rR(C-1)

TOP

C Columns

LE
FT

R
IG

H
T

R
R

ow
s

 f L

 gL

N
 R

ow
s

M Columns

Insulator
Metal

BOTTOM

V-in

Fig. 10. Boolean computation in a lattice, i.e., each region has N × M four-terminal switches. Each region
can be realized by an N ×M nanowire crossbar array with a controlling voltage V-in.

In our synthesis method, a Boolean function is implemented by a lattice according to the connec-
tivity between the top and bottom plates. For the purpose of elucidating our method, we will also
discuss connectivity between the left and right plates. Call the Boolean functions corresponding to
the top-to-bottom and left-to-right plate connectivities fL and gL, respectively. (Note, however, that
our design method does not aim to implement separate top-to-bottom and left-to-right functions. As
we explain below, fL and gL are related.)

8

As shown in Figure 11, each Boolean function evaluates to 1 if there exists a path between cor-
responding plates and evaluates to 0 otherwise. Thus, the Boolean functions fL and gL can be
computed as the OR of all top-to-bottom and left-to-right paths, respectively. Since each path cor-
responds to the AND of inputs, the paths taken together correspond to the OR of these AND terms,
so implement a sum-of-products expression.

Fig. 11. Relation between Boolean functionality and paths; fL = 1 and gL = 0. (a) Each of the 16 regions is
assigned logic 0 or 1; R = 4 and C = 4. (b) Each region has 9 switches; N = 3 and M = 3.

Note that the values of N and M do not affect the Boolean functionality between plates; they
determine the defect tolerance capability of the lattice. Therefore, for simplicity, let’s set N = 1
and M = 1 while computing the Boolean functions fL and gL. In this way, there are fewer paths to
count between the corresponding plates. Consider the lattice shown in Figure 12(a): here there are 6
regions each of which is controlled by a Boolean literal. WithN = 1 andM = 1, there are 3 top-to-
bottom paths and 4 left-to-right paths, as shown in Figure 12(b). Here fL is the OR of the 3 products
x1x3, x̄1x2, x3x4 and gL is the OR of the 4 products x1x2x3, x1x̄1x2x4, x̄1x2x3x3, x̄1x3x4. As a
result, fL = x1x3 + x̄1x2 + x3x4 and gL = x̄1x3x4 + x2x3.

L

L

L

L

Fig. 12. (a) A lattice with assigned inputs to 6 regions. (b) Switch-based representation of the lattice; N = 1
and M = 1.

In the following section, we study the robustness of the lattice computation. We investigate the
computation, implemented in terms of connectivity across the lattice, in the presence of defects.

9

3.1. Robustness
An important consideration in synthesis is the quality of the margins, defined in Definition 1.

Suppose that the one and zero margins are the ranges of values for p1 for which p2 is always above
(1 − ε) and below ε, respectively, where ε is a very small number. For what follows, we will use
a value ε = 0.001. The margins correlate with the degree of defect tolerance. For instance a 10%
one margin means that a defect rate of up to 10% can be tolerated while the corresponding Boolean
function evaluates to 1. In other words, although each switch is defective with probability 0.1, the
circuit still evaluates to 1 with high probability (p2 > 0.999). The higher the margins, the higher the
defect tolerance that we achieve.

Different assignments of input variables to the regions of the lattice affect the margins. Consider
a 4-input 2 × 2 lattice shown in Figure 13(a). Suppose that N = 8 and M = 8 for this lattice.
Figure 13(b) shows Boolean functionalities and margins for different input assignments. Since the
lattice has 4 input variables x1, x2, x3, x4 there should be 16 different input assignments. However,
there are only 7 rows in the table. Some input assignments produce the same result due symmetries
in the lattice: flipping the lattice vertically or horizontally gives us two different input assignments
that are identical in terms of margins as well as the Boolean functionality. Note that each margin
value in the table corresponds to either a one margin (if the corresponding Boolean function is 1) or
a zero margin (if the corresponding Boolean function is 0). We define the worst-case one and zero
margins to be the minimum one and zero margins of all input assignments. For example, the table
shown in Figure 13(b) states that fL has a 14% worst-case one margin and a 0% worst-case zero
margin.

x1 x2

x3 x4

LE
FT

BOTTOM

TOP

R
IG

H
T

 (a) (b)

Fig. 13. (a): A lattice with assigned inputs; R = 2 and C = 2. (b): Possible 0/1 assignments to the inputs (up
to symmetries) and corresponding margins for the lattice (N = 8,M = 8).

The row highlighted in grey has very low margins – indeed, these are nearly zero – so the circuit
is likely to produce erroneous values for this input combination. Let’s examine why. Assignments
that evaluate to 0 but have diagonally adjacent assignments of blocks of 1’s could be problematic
because there is a chance that a weak connection will form through stray, random connections across
the diagonal. This is illustrated in Figure 14. In this example, fL and gL both evaluate to 0; however
the top-to-bottom and left-to-right connectivities evaluate to 1 if a defect occurs around the diagonal
1’s. In effect, such defective switches are “shorting” the connection. So in this case fL and gL both
evaluate to 1, incorrectly.

Note that diagonal paths are only problematic when the corresponding Boolean function evaluates
to 0 because the diagonal paths can only cause 0 → 1 errors. If the Boolean function evaluates to
1, these diagonal paths do not cause such an error; at best they strengthen the connection between
plates. This is illustrated in Figure 15. In the figure, there are both top-to-bottom and left-to-right
diagonal paths shown with red lines. However, only the top-to-bottom diagonal path is destructive
because only fL evaluates to 0 (gL = 1).

10

L L

Fig. 14. An input assignment with a low zero margin.

Fig. 15. An input assignment with top-to-bottom and left-to-right diagonal paths.

Definition of Robustness: We call a lattice robust if there is no input assignment for which the
top-to-bottom function evaluates to 0 that contains diagonally adjacent 1’s.

The following theorem tells us the necessary and sufficient condition for robustness.

Theorem 1 A lattice is robust iff the top-to-bottom and left-to-right functions fL and gL are dual
functions: fL(x1, x2, . . . , xk) = ḡL(x̄1, x̄2, . . . , x̄k).

(See Definition 6 for the meaning of dual.)

PROOF. In the proof, we consider two cases, namely fL = 1 and fL = 0.

Fig. 16. Illustration of Theorem 1.

11

Case 1: If fL(x1, x2, . . . , xk) = 1, there must be a path of 1’s between top and bottom.
If we complement all the inputs (1 → 0, 0 → 1), these connected 1’s become 0’s and ver-
tically separate the lattice into two parts. Therefore no path of 1’s exists between the left and
right plates, i.e., gL(x̄1, x̄2, . . . , x̄k) = 0. As a result, ḡL(x̄1, x̄2, . . . , x̄k) = fL(x1, x2, . . . , xk) = 1

Case 2: If fL(x1, x2, . . . , xk) = 0 and there are no diagonally connected top-to-
bottom paths, there must be a path of 0’s between left and right. If we complement all
the inputs, these connected 0’s become 1’s, i.e., gL(x̄1, x̄2, . . . , x̄k) = 1. As a result,
ḡL(x̄1, x̄2, . . . , x̄k) = fL(x1, x2, . . . , xk) = 0

Figure 16 illustrates the two cases. Taken together the two cases prove that for robust computation,
fL and gL must be dual functions. For both cases it is trivial that we can do the same reasoning in
an inverse way: if fL and gL are dual functions then every input assignment is robust.

Example 1 Consider the lattices shown in Figure 17. For both lattices, R = 2 and C = 2. Let’s
analyze the robustness of these two lattices using Theorem 1.

Fig. 17. (a) An example of non-robust computation; (b) An example of robust computation.

Example (a): The Boolean functions implemented by the lattice are fL = x1x3 + x2x4 and
gL = x1x2 + x3x4. Since fDL = (x1 + x3)(x2 + x4) = x1x2 + x1x4 + x2x3 + x3x4 6= gL, so fL
and gL are not dual functions. Theorem 1 tells us that if fL and gL are not dual then there exists an
non-robust input assignment. We can easily identify it: x1 = 1, x2 = 0, x3 = 0, x4 = 1.

Example (b): The Boolean functions implemented by the lattice are fL = x1x3 + x̄1x2 and
gL = x1x2 + x̄1x3. Since fDL = (x1 + x3)(x̄1 + x2) = x1x2 + x̄1x3 = gL, so fL and gL are dual
functions. Theorem 1 tells us that if fL and gL are dual then every assignment is robust. One can
easily see that none of the input assignments cause diagonal 1’s while the corresponding function
evaluates to 0.

We conclude that, in order to achieve robust computation, we must design lattices that have dual
top-to-bottom and left-to-right Boolean functions.

3.2. Logic Optimization Problem
This gives rise to an interesting problem in logic optimization: given a target function fT in SOP

form, how should we assign the input literals such that fL = fT and gL = fDT ? In other words,
how should we assign literals so that the lattice implements the target function between the top
and bottom plates, and implements the dual of the function between the left and right plates? As
described in the previous section, having dual functions ensures robustness.

While maximizing the margins, we also need to consider the area of the lattice; this can be mea-
sured by the total number of switches R × C × N ×M in the lattice. Here R × C and N ×M
represent the number of regions and the number of switches for each region, respectively.

12

We suggest a four-step algorithm for optimizing the lattice area while meeting prescribed
worst-case margins for a given target function fT .

Algorithm:

(1) Begin with the target function fT and its dual fDT both in MSOP form.
(2) Find a lattice with the smallest number of regions that satisfies the conditions: fL = fT and

gL = fDT . This determines R× C.
(3) Dependent on the defect rates of the technology, determine the required worst-case one and zero

margin values.
(4) Determine the number of switches required in each region in order to meet the prescribed mar-

gins. This determines N ×M .

The first step is straightforward. The dual of the target function can be computed from Defini-
tion 6. Exact methods such as Quine-McCluskey or heuristic methods such as Espresso can be used
to obtain functions in MSOP form [McCluskey 1986; Brayton et al. 1984].

For the second step of the algorithm, we point the reader to our prior work. In [Altun and Riedel
2010; 2011], we addressed the problem of assigning literals to switches in a lattice in order to
implement a given target Boolean function. The goal was to minimize the number of regions. We
presented an efficient algorithm that produces lattices with a size that grows linearly with the number
of products of the target Boolean function. Suppose that fT and fDT in MSOP form have A and B
product terms, respectively. Our algorithm produces lattices with B × A regions (R = B and
C = A) for which fL = fT and gL = fDT [Altun and Riedel 2010].

For the third step, we assume that the defect rates of the switches are known or can be estimated.
Recall that we consider two types of defects: those that result in switches being OFF while they are
supposed to be ON (call these “ON-to-OFF” defects), and defects that result in switches being ON
while they are supposed to be OFF (call these “OFF-to-ON” defects). We allow for different rates
for both types of defects. Based upon the ON-to-OFF and OFF-to-ON defect rates, we establish the
worst-case one and zero margins, respectively.

For the fourth step, we need to determine N and M such that the lattice meets the prescribed
margins. Figure 18 shows the general relationship between margins and N and M . It suggests how
we should select values of N and M . For instance, suppose that we require a 20% one margin and a
5% zero margin. Figure 18 tells us that we need to select a larger value of M than that of N . Also,
from the figure, we observe that regardless of whether we increase N or M , the sum of the margins
always increases. This is due to the percolation phenomenon: the larger the lattice, the steeper the
non-linearity curve. Based upon these considerations, we use a simple greedy technique to set the
required values of N and M . The method tries worst-case margins for different values of N and M
until the prescribed margins are met.

We elucidate our algorithm with the following examples. For all of the examples, we use 10%
worst-case one and zero margins.

Fig. 18. Relationship between margins, and N and M .

Example 2 Suppose that we are given the following target function fT in MSOP form:

fT = x1x2.

13

First, we compute its dual fDT in MSOP form:

fDT = x1 + x2.

The number of products in fT and fDT are 1 and 2, respectively, i.e., A = 1 and B = 2.
Then, we construct a lattice such that fL = fT = x1x2 and gL = fDT = x1 + x2. The lattice is
illustrated in Figure 19. Note that R = B = 2 and C = A = 1.
Finally, we find that N = 4 and M = 6 in order to satisfy 10% worst-case one and zero margins.
As a result, the lattice area = R× C ×N ×M = 2× 1× 4× 6 = 48.

Fig. 19. A lattice that implements fL = x1x2 and gL = x1 + x2.

Example 3 Suppose that we are given the following target function fT in MSOP form:

fT = x1x̄2 + x̄1x2.

First, we compute its dual fDT in MSOP form:

fDT = x1x2 + x̄1x̄2.

We have that A = 2 and B = 2.
Then, we construct a lattice such that fL = fT and gL = fDT . The lattice is illustrated in Figure 20.
Note that R = B = 2 and C = A = 2.
Finally, we find that N = 4 and M = 6 in order to satisfy 10% worst-case one and zero margins.
As a result, the lattice area = R× C ×N ×M = 2× 2× 4× 6 = 96.

Fig. 20. A lattice that implements fL = x1x̄2 + x̄1x2 and gL = x1x2 + x̄1x̄2.

Example 4 Suppose that we are given the following target function fT in MSOP form:

fT = x1x̄2x3 + x1x̄4 + x2x2x̄4 + x2x4x5 + x3x5.

First, we compute its dual fDT in MSOP form:

fDT = x1x2x5 + x1x3x4 + x2x3x̄4 + x̄2x̄4x5.

14

We have that A = 5 and B = 4.
Then, we construct a lattice such that fL = fT and gL = fDT . The lattice is illustrated in Figure 21.
Note that R = B = 4 and C = A = 5.
Finally, we find that N = 4 and M = 5 in order to satisfy 10% worst-case one and zero margins.
As a result, the lattice area = R× C ×N ×M = 4× 5× 4× 5 = 400.

Fig. 21. A lattice that implements fL = x1x̄2x3 + x1x̄4 + x2x2x̄4 + x2x4x5 + x3x5 and gL = x1x2x5 +
x1x3x4 + x2x3x̄4 + x̄2x̄4x5.

We implement the target functions with specified margins. Note that because of the lattice dual-
ity, the one and zero margins of target functions become the zero and one margins of their duals,
respectively.

4. EXPERIMENTAL RESULTS
We report synthesis results for some common benchmark circuits [McElvain 1993]. We consider

each output of a benchmark circuit as a separate target Boolean function. Figure 22 lists the required
lattice areas for the target functions meeting 10% worst-case one and zero margins. Recall that the
lattice area is defined as the number of switches in the lattice. It can be calculated asR×C×N×M
where R × C and N ×M represent the number of regions and the number of switches for each
region, respectively.

In order to obtain the lattice areas, we follow the steps of the proposed algorithm in Section 3.2.
We first obtain values for A and B, the number of products in the target functions and their duals,
respectively. Our algorithm sets R = A and C = B, so produces lattices with B × A regions. We
calculate values of N and M that satisfy the prescribed 10% worst-case margins.

Figure 22 reports the lattice areas, calculated as A × B × N ×M . Examining the numbers in
the table, we see that number of switches needed per region, N ×M , is negatively correlated with
the number of regions, A×B. That is to say, Boolean functions with more products (larger A×B
values) need smaller regions (smaller N ×M values) to meet prescribed margins. This indicates a
positive scaling trend: the lattice size grows more slowly than the function size. This key behavior
is due to the percolation phenomena.

5. DISCUSSION
The two-terminal switch model is fundamental and ubiquitous in electrical engineering [Bryant

1987]. Either implicitly or explicitly, nearly all logic synthesis methods target circuits built from
two-terminal switches, i.e., transistors. And yet, with the advent of novel nanoscale technologies,
synthesis methods targeting lattices of multi-terminal switches are apropos. Our model consists

15

Circuit A B Number of regions N M Lattice area
alu1 3 2 6 5 6 180
alu1 2 3 6 4 6 144
alu1 1 3 3 4 6 72
clpl 4 4 16 4 5 320
clpl 3 3 9 4 5 180
clpl 2 2 4 4 6 96
clpl 6 6 36 4 5 720
clpl 5 5 25 4 5 500

newtag 8 4 32 5 5 800
dc1 4 4 16 4 5 320
dc1 2 3 6 4 6 144
dc1 4 4 16 4 5 320
dc1 4 5 20 4 6 480
dc1 3 3 9 4 5 180

misex1 2 5 10 4 7 280
misex1 5 7 35 4 6 840
misex1 5 8 40 4 6 960
misex1 4 7 28 4 6 672
misex1 5 5 25 4 5 500
misex1 6 7 42 4 5 840
misex1 5 7 35 4 6 840

b12 4 6 24 4 6 576
b12 7 5 35 5 5 875
b12 7 6 42 5 5 1050
b12 4 2 8 5 6 240
b12 4 2 8 5 6 240
b12 5 1 5 6 5 150
b12 9 6 54 5 5 1350
b12 6 4 24 5 5 600
b12 7 2 14 6 5 420

newbyte 1 5 5 4 7 140
newapla2 1 6 6 4 7 168

c17 3 3 9 4 5 180
c17 4 2 8 5 6 240

rd53 5 10 50 4 6 1200
rd53 10 10 100 4 5 2000
rd53 16 16 256 3 5 3840

Fig. 22. Lattice areas for the output functions of benchmark circuits in order to meet 10% worst-case one and zero margins.

of a regular lattice of multi-terminal switches, each controlled by a Boolean literal. This model
is conceptually general and applicable to a range of emerging technologies, including nanowire
crossbar arrays [Cui and Lieber 2001] and magnetic switch-based structures [Khitun et al. 2008].
We are investigating its applicability to DNA nanofabrics [Pistol et al. 2006; Rothemund 2006].
In this paper, we focused on four-terminal switches. In future work, we will the extend the results
paper to lattices of eight-terminal switches, and then to 2k-terminal switches, for arbitrary k.

Particularly with self-assembly, nanoscale lattices are often characterized by high defect rates.
Significantly, unlike many other strategies for defect tolerance, our method does not require defect
identification followed by reconfiguration. Our method provides a priori tolerance to defects of any
kind, both permanent and transient, provided that such defects occur probabilistically and indepen-

16

dently. Indeed, percolation depends on a random distribution of defects. If the defect probabilities
are correlated across regions, then the steepness of the percolation curve decreases; as a result, the
defect tolerance diminishes. In future work, we will study this tradeoff mathematically and develop
synthesis strategies to cope with correlated probabilities in defects.

REFERENCES
ALTUN, M. AND RIEDEL, M. D. 2010. Lattice-based computation of Boolean functions. In Design Automation Conference.

609–612.
ALTUN, M. AND RIEDEL, M. D. 2011. Logic synthesis for switching lattices. IEEE Transactions on Computers (Under

revision).
ALTUN, M., RIEDEL, M. D., AND NEUHAUSER, C. 2009. Nanoscale digital computation through percolation. In Design

Automation Conference. 615–616.
BRAYTON, R. K., MCMULLEN, C., HACHTEL, G. D., AND SANGIOVANNI-VINCENTELLI, A. 1984. Logic Minimization

Algorithms for VLSI Synthesis. Kluwer Academic Publishers.
BROADBENT, S. R. AND HAMMERSLEY, J. M. 1957. Percolation processes I. crystals and mazes. In Proceedings of the

Cambridge Philosophical Society. 629–641.
BRYANT, R. E. 1987. Boolean analysis of MOS circuits. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems 6, 4, 634–649.
CUI, Y. AND LIEBER, C. M. 2001. Functional nanoscale electronic devices assembled using silicon nanowire building

blocks. Science 291, 5505, 851–853.
DEHON, A. 2005. Nanowire-based programmable architectures. ACM Journal on Emerging Technologies in Computing

Systems 1, 2, 109–162.
ESHAGHIAN-WILNER, M. M., KHITUN, A., NAVAB, S., AND WANG, K. 2006. A nano-scale reconfigurable mesh with

spin waves. In International Conference on Computing Frontiers. 5–9.
HOGG, T. AND SNIDER, G. 2007. Defect-tolerant logic with nanoscale crossbar circuits. Journal of Electronic Testing 23,

117–129.
HUANG, J., TAHOORI, M., AND LOMBARDI, F. 2004. On the defect tolerance of nano-scale two-dimensional crossbars. In

International Symposium on Defect and Fault Tolerance of VLSI Systems. 96–104.
HUANG, Y., DUAN, X., CUI, Y., LAUHON, L. J., KIM, K., AND LIEBER, C. M. 2001. Logic gates and computation from

assembled nanowire building blocks. Science 294, 5545, 1313–1317.
KHITUN, A., BAO, M., AND WANG, K. L. 2008. Spin wave magnetic nanofabric: A new approach to spin-based logic

circuitry. IEEE Transactions on Magnetics 44, 9, 2141–2152.
KUEKES, P., ROBINETT, W., SEROUSSI, G., AND WILLIAMS, R. 2005. Defect-tolerant interconnect to nanoelectronic

circuits: Internally redundant demultiplexers based on error-correcting codes. Nanotechnology 16, 6, 869–882.
LUO, Y., COLLIER, C. P., JEPPESEN, J. O., NIELSEN, K. A., DELONNA, E., HO, G., PERKINS, J., TSENG, H.,

YAMAMOTO, T., STODDART, J. F., AND HEATH, J. R. 2002. Two-dimensional molecular electronics circuits.
ChemPhysChem 3, 6, 519–525.

MCCLUSKEY, E. J. 1986. Logic Design Principles with Emphasis on Testable Semicustom Circuits. Prentice-Hall.
MCELVAIN, K. 1993. IWLS93 benchmark set: Version 4.0, distributed as part of the IWLS93 benchmark distribution,

http://www.cbl.ncsu.edu:16080/benchmarks/lgsynth93/.
PISTOL, C., LEBECK, A. R., AND DWYER, C. 2006. Design automation for dna self-assembled nanostructures. In Design

Automation Conference.
ROTHEMUND, P. W. K. 2006. Folding dna to create nanoscale shapes and patterns. Nature 440, 7082, 297–302.
SNIDER, G. AND WILLIAMS, R. 2007. Nano/CMOS architectures using a field-programmable nanowire interconnect. Nan-

otechnology 18, 1–11.
SUN, F. AND ZHANG, T. 2006. Two fault tolerance design approaches for hybrid CMOS/nanodevice digital memories. In

International Workshop on Defect and Fault Tolerant Nanoscale Architectures.
WHITESIDES, G. M. AND GRZYBOWSKI, B. 2002. Self-assembly at all scales. Science 295, 5564, 2418–2421.
YAN, H., PARK, S. H., FINKELSTEIN, G., REIF, J. H., AND LABEAN, T. H. 2003. DNA-templated self-assembly of

protein arrays and highly conductive nanowires. Science 301, 5641, 1882–1884.
ZIEGLER, M. M. AND STAN, M. R. 2003. CMOS/nano co-design for crossbar-based molecular electronic systems. IEEE

Transactions on Nanotechnology 2, 4, 217–230.
ZOMAYA, Y. 2006. Molecular and nanoscale computing and technology. In Handbook of Nature-Inspired and Innovative

Computing. Springer, Chapter 14, 478–520.

17

