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ABSTRACT
A classical problem in logic synthesis is to find a sum-of-product

(SOP) Boolean expression with the minimum number of product
terms that implements a Boolean function. In this paper, we fo-
cus on a related yet different synthesis problem targeted toward
probabilistic computation. In our scenario, we want to synthesize
a Boolean function that covers an exact number of minterms, say
m minterms. This is the only requirement; which m minterms are
covered does not matter. The objective is to find a SOP Boolean
expression with the minimum number of product terms with this
property. Solving this problem provides a solution to the prob-
lem of generating arbitrary probability values from unbiased input
probabilities values of 0.5 with combinational logic.

We first show a method for constructing a set of product terms
to cover exactly m minterms; this gives an upper bound. Then, as
our major contribution, we propose a method for deriving a lower
bound. We show that the problem of finding such a lower bound
can be converted into an optimization problem which we call the
optimal subtraction problem. We solve it with dynamic program-
ming. Experiments on benchmarks show that for some numbersm,
the lower bound meets the upper bound, indicating that the solution
corresponding to the upper bound is optimal. For some other num-
bers m, the gap between the lower bound and the upper bound is
small, indicating that the solution corresponding to the upper bound
is nearly optimal.

1. INTRODUCTION
Most digital circuits are designed to map deterministic inputs of

zero and one to deterministic outputs of zero and one. An alterna-
tive paradigm is to design digital circuits that operate on random
Boolean bit streams. Such circuits transform input probabilities,
encoded by random bit streams, into output probabilities, also en-
coded by random bit streams. For example, consider the AND gate
shown in Figure 1. It has two inputs that are one with independent
probability 0.5. It has an output that is one with probability 0.25.
Thus, we can say that the gate generates the probability value 0.25
from two copies of the probability value 0.5.

We call the paradigm of digital gates operating on random bit
streams probabilistic computation. It has numerous application ar-
eas. For example, in built-in self-test (BIST), probabilistic compu-
tation is used to generate weighted random testing patterns [1]. In
hardware implementations of probabilistic algorithms, it is used to
generate probabilistic seed values from random sources [2].

In [3], the authors described a method for synthesizing combi-
national logic that generates any required probability value from
a small set of given probabilities. Specifically, they proposed a
method for synthesizing circuits that generate arbitrary decimal
probabilities from a pair of probability values 0.4 and 0.5.

In this work, we consider the same problem: synthesizing com-
binational logic to generate arbitrary probability values. However,
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Figure 1: An AND gate with two inputs that are one with independent
probability 0.5. Its output is one with probability 0.25.

we assume that we are only given access to unbiased input prob-
abilities from an external source: the source provides independent
copies of the probability value 0.5.

Given combinational logic with a single output and n inputs, if
all inputs independently have probability 0.5 of being one, then
each input combination has probability 1

2n
of occurring. If the

combinational circuit contains exactlymminterms, then the proba-
bility that the output is one is m

2n
. Thus, the set of probabilities that

can be realized by this model is {s|s = k
2n
, k = 0, 1, . . . , 2n}.

Example 1
Table 1 shows a truth table for a Boolean function

y = (x0 ∧ x1) ∨ x2.
1

The last column shows the probability of each input combination
occurring. If each input variable has probability of 0.5 being one,
each input combination has probability of 1/8 of occurring. Since
the Boolean function contains 5 minterms, the probability of y be-
ing one is 5/8. �

Table 1: A truth table for the Boolean function y = (x0 ∧ x1) ∨ x2.
The last column shows the probability of each input combination occurring,
under the assumption that each input variable has probability 0.5 of being
one.

x0 x1 x2 y Probability
0 0 0 0 1/8
0 0 1 1 1/8
0 1 0 0 1/8
0 1 1 1 1/8
1 0 0 0 1/8
1 0 1 1 1/8
1 1 0 1 1/8
1 1 1 1 1/8

We consider the synthesis problem of implementing a probability
m
2n

, where 0 ≤ m ≤ 2n is an arbitrary given integer. To imple-
ment the probability m

2n
, we can simply choose m input combina-

tions and set their output values to be one. However, there are many
ways to choose the m input combinations out of a total of 2n input

1When discussing Boolean functions, we will use ∧ to represent logical
AND, ∨ to represent logical OR, and ¬ to represent logical negation. We
adopt this convention since later we will use the symbols for addition and
multiplication to represent arithmetic operations.



combinations; different choices may result in vastly different com-
plexity of implementation. This motivates a new and interesting
problem in logic synthesis:

Problem: what is the optimal way to synthesize logic that cov-
ers exactly m minterms if the choice which m minterms are
covered does not matter?

The complexity of logic circuit depends on its implementation.
In this work, we focus on two-level implementation of logic cir-
cuit [4]. Since two-level logic synthesis plays an important role
in multilevel logic synthesis [5], we believe that first understand-
ing the two-level version of the synthesis problem for probabilistic
computation will facilitate future research in attacking the multi-
level version.

Minimizing the area of the two-level implementation is equiv-
alent to minimizing the number of product terms of the sum-of-
product (SOP) representation of a Boolean function [6]. Thus, the
problem can be formulated as:

Given the number of variables n for a Boolean function and an
integer 0 ≤ m ≤ 2n, find a SOP Boolean expression with the min-
imum number of product terms that contains exactly m minterms.

Example 2
Suppose that we want to synthesize a 4-variable Boolean function
that contains 7 minterms. This is equivalent to filling in the Kar-
naugh map of 4 variables with exactly 7 ones. Figure 2 shows two
different ways to fill one in. The optimal SOP Boolean expression
for the function shown in Figure 2(a) is

(x̄0 ∧ x̄2) ∨ (x̄0 ∧ x3) ∨ (x1 ∧ x2 ∧ x3).

It contains three product terms, whereas the optimal SOP Boolean
expression for the function shown in Figure 2(b) is

(x̄0 ∧ x̄2) ∨ (x1 ∧ x3).

It contains two product terms.
We can see that different choices for filling in 7 ones in the Kar-

naugh map can lead to optimal SOP Boolean expressions with dif-
ferent numbers of product terms. �
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Figure 2: The Karnaugh maps of two different Boolean functions both
containing 7 minterms: (a) The optimal SOP expression is (x̄0 ∧ x̄2) ∨
(x̄0 ∧ x3) ∨ (x1 ∧ x2 ∧ x3), which contains three product terms. (b) The
optimal SOP expression is (x̄0 ∧ x̄2) ∨ (x1 ∧ x3), which contains two
product terms.

The problem of finding the minimum number of product terms to
cover exactly m minterms is a very hard combinatorial optimiza-
tion problem. As the first step towards solving it, we formulate
upper and lower bounds. We first show a method to construct a set
of product terms to cover a given number of minterms. It gives an
upper bound. Then, as the major contribution, we propose a lower
bound on the minimum number of product terms to cover exactly
m minterms. Such a lower bound is useful because:

1. A lower bound is a good place to start the search for an exact
optimal solution to such a hard combinatorial optimization
problem. (Consider NOVA [7], a procedure for finding op-
timal encodings for finite state machines: it starts the search
for the optimal encoding from a sophisticated lower bound
on the length of the encoding.)

2. For a hard combinatorial optimization problem, if an exact
optimal solution cannot be obtained, then we hope for a good
suboptimal solution. A lower bound lets us measure how
good a suboptimal solution is.

Indeed, as revealed by the experimental results on benchmarks,
for some numbers m, our proposed lower bound equal the up-
per bound, indicating that the solution corresponding to the upper
bound is optimal. For some other numbers m, the upper bound is
slightly larger than the lower bound, indicating that the solutions
are suboptimal, but still quite good.

The paper is organized as follows. In Section 2, we introduce
some preliminaries and show the upper bound. In Section 3, we
derive a strong lower bound. In fact, we show that the lower bound
problem can be reduced to what we call the optimal subtraction
problem. We provide a dynamic-programming-based algorithm to
solve this problem. The proposed algorithm has time complexity
O(d2), where d in the number of bits in the binary representation
of m. Experimental results on benchmarks are given in Section 4.

2. PRELIMINARIES
We focus on sum-of-product expression of Boolean functions

and we adopt the same definition as given in [8]. The set of n
variables of a Boolean function is denoted as x0, . . . , xn−1. For a
variable x, x and x̄ are referred to as literals. A Boolean product,
also known as cube, denoted by c, is a conjunction of literals such
that x and x̄ do not appear simultaneously. A minterm is a cube
in which each of the n variables appear once, in either its com-
plemented or uncomplemented form. A sum-of-product Boolean
expression is a disjunction of a set of cubes. If two cubes satisfy
that c1 ∧ c2 = 0, we say that the cube c1 and c2 are disjoint.

Definition 1
Define V (f) to be the number of minterms contained in a Boolean
function f . �

If a cube c contains k literals (0 ≤ k ≤ n), then the number of
minterms contained in the cube is V (c) = 2n−k. Note that when a
cube contains 0 literals, it is a special cube c = 1, which contains
all minterms in the entire Boolean space. There is another special
cube called empty cube, which is c = 0. The number of minterms
contained in an empty cube is V (c) = 0. Thus, the number of
minterms contained in a cube is in the set S = {s|s = 0 or s =
2k, k = 0, 1, . . . , n}.

We use η to denote the minimum number of cubes to cover ex-
actly m minterms. The following theorem gives a method to con-
struct a set of cubes to cover a given number of minterms, which
also indicates an upper bound on η.

Theorem 1
If the binary representation of 0 ≤ m ≤ 2n contains λ ones, i.e.,
if m =

∑n
i=0 mi2

i such that
∑n
i=0 mi = λ, then we can cover

exactly m minterms with λ cubes. �

PROOF. In the case that m = 0 or m = 2n, the theorem is
obviously true.

Now we consider 0 < m < 2n. Suppose that the λ ones in the
binary representation of m are mi0 = mi1 = · · · = miλ−1 = 1,
where 0 ≤ i0 < i1 < · · · < iλ−1 ≤ n − 1. Define iλ = n.
Then, we can construct λ cubes c0, . . . , cλ−1 such that cj consists



of literals xij , . . . , xi(j+1)−1 and literals x̄i(j+1) , . . . , x̄n−1. It is
not hard to see that V (cj) = 2ij . Further, for any i and j such that
0 ≤ i < j ≤ λ − 1, ci ∧ cj = 0, which means that c0, . . . , cλ−1

are pairwise disjoint. Thus the number of minterms covered by the
λ cubes is

∑λ−1
j=0 V (cj) =

∑λ−1
j=0 2ij = m. Therefore, we can

cover exactly m minterms with λ cubes.

Example 3
Suppose that we want to synthesize a set of cubes on 4 variables
to cover 11 minterms. Since the binary representation of 11 is
(1011)2, thus, based on the proof of Theorem 1, we can derive a set
of 3 cubes to cover 11 minterms, which are c0 = x0∧ x̄1∧ x̄2∧ x̄3,
c1 = x1 ∧ x2 ∧ x̄3 and c2 = x3. �

Theorem 1 gives an upper bound on the minimum number of
cubes covering exactly m minterms, i.e., η ≤ λ.

In Example 2, we want to find a set of cubes to cover 7 minterms.
Since the binary representation of 7 has 3 ones, we are able to cover
7 minterms with 3 cubes. However, as shown in Figure 2(b), we can
do better by using only 2 cubes to cover 7 minterms. Exploring the
reason behind this reveals the basic idea to optimize the number
of cubes to cover a given number of minterms: we can potentially
use a set of non-disjoint cubes to reduce the number of cubes. The
basic principle we use is the inclusion-exclusion principle:

Lemma 1
Given λ cubes c0, . . . , cλ−1, the number of minterms cover by the
λ cubes is

V

(
λ−1∨
i=0

ci

)
=

λ−1∑
i=0

V (ci)−
∑
i,j:

0≤i<j≤λ−1

V (ci ∧ cj)

+
∑
i,j,k:

0≤i<j<k≤λ−1

V (ci ∧ cj ∧ ck)− · · ·+ (−1)λ−1V

(
λ−1∧
i=0

ci

)
.

(1)

�

To make the representation compact in the following sections,
we make the following definitions.

Definition 2
An integer Γ ≥ 0 is represented as a binary number, or a binary
sequence, (γλ−1 . . . γ0)2, if Γ =

∑λ−1
i=0 γi2

i, where γi ∈ {0, 1}.
Given two integers i and j such that 0 ≤ j ≤ i ≤ λ − 1, we use
Γ[i, j] to denote a subsequence (γi . . . γj)2 of the binary number
of Γ. For two binary sequences a and b, we use [a : b] to denote
the binary sequence of a followed by b. �

For example, given a = (1001)2 and b = (1010)2, [a : b] =
(10011010)2.

Definition 3
Given a cube c and γ ∈ {0, 1}, define

cγ =

{
1, if γ = 0

c, if γ = 1

Given λ cubes c0, . . . , cλ−1 and an integer Γ = (γλ−1 . . . γ0)2,
defineCΓ to be the intersection of a subset of cubes ci with γi = 1,
i.e., CΓ =

∧λ−1
i=0 c

γi
i . �

Definition 4
Given an integer Γ = (γλ−1 . . . γ0)2, define B(Γ) to be the num-
ber of ones in the binary representation of Γ, i.e.,B(Γ) =

∑λ−1
i=0 γi.

�

With the above definitions, Equation (1) can be rewritten as

V

(
λ−1∨
i=0

ci

)
=

2λ−1∑
Γ=1

(−1)B(Γ)−1V
(
CΓ
)
. (2)

3. A LOWER BOUND ON THE MINIMUM
NUMBER OF CUBES

In previous section, we showed an upper bound on the minimum
number of cubes η to cover a given number of minterms. In this
section, we show a lower bound on the minimum number of cubes.
It is related to the following problem, which we call the optimal
subtraction problem:

Given two integers m ≥ 0 and t ≥ 0, find two integers a ≥ 0
and b ≥ 0 to minimize the number of ones in the binary represen-
tation of a,B(a), subject to the constraints thatm = a−b and that
the number of ones in the binary representation of b is no larger
than t, i.e., B(b) ≤ t.

In what follows, we will first show how a necessary condition
on the minimum number of cubes to covermminterms leads to the
optimal subtraction problem. Then, we will show some mathemati-
cal properties of the optimal subtraction problem and demonstrate a
dynamic-programming-based solution to that problem. Finally, we
will show how to achieve a lower bound on the minimum number
of cubes to cover m minterms by solving the optimal subtraction
problem.

3.1 The Origin of Optimal Subtraction
Problem

Suppose that we can find a minimum of η cubes c0, . . . , cη−1 to
cover exactly m minterms. Then, based on Equation (2), we have

m =

2η−1∑
Γ=1

(−1)B(Γ)−1V
(
CΓ
)

We can split the sum expression in the above equation into two
sum expressions a and b such that a contains all terms with a plus
sign and b contains all terms with a minus sign, i.e.,

a =
∑

1≤Γ≤2η−1:
B(Γ) is odd

V
(
CΓ
)
, b =

∑
1≤Γ≤2η−1:
B(Γ) is even

V
(
CΓ
)
. (3)

Then, a, b ≥ 0 and m = a− b.
It is not hard to see that a contains 2η−1 terms and b contains

2η−1 − 1 terms, where each term V
(
CΓ
)

is from the set S =

{s|s = 0 or s = 2k, k = 0, 1, . . . , n}. Let Na = 2η−1 and
Nb = 2η−1 − 1. Next we will show Na ≥ B(a) and Nb ≥ B(b).
First, we give a general theorem:

Theorem 2
GivenN integers 0 ≤ j0 ≤ j1 ≤ · · · ≤ jN−1, let z =

∑N−1
k=0 2jk .

Then, B(z) ≤ N . �

PROOF (SKETCH). Suppose that B(z) = M . Since the binary
representation of z contains M ones, z can be represented as z =∑M−1
k=0 2ik , where 0 ≤ i0 < i1 < · · · < iM−1. We could show

that there exist M + 1 number r0, r1, . . . , rM , such that

−1 = r0 < r1 < · · · < rM−1 < rM = N − 1 (4)

and for l = 0, . . . ,M − 1,
∑rl+1
k=rl+1 2jk = 2il .

Therefore, from Equation (4), we have

N = rM − r0 =

M∑
l=1

(rl − rl−1) ≥M, or B(z) = M ≤ N.



Suppose that theNa elements V (CΓi) of the sum expression (3)
for a are arranged as

V (CΓ1) = · · · = V (CΓr ) = 0 < V (CΓr+1) ≤ · · · ≤ V (CΓNa ),

where r ≥ 0 and for r + 1 ≤ i ≤ Na,

V (CΓi) ∈ S∗ = {s|s = 2k, k = 0, 1, . . . , n}.

Therefore, there existNa−r integers 0 ≤ j0 ≤ · · · ≤ jNa−r−1,
such that a =

∑Na−r−1
k=0 2jk . Applying Theorem 2, we conclude

that B(a) ≤ Na − r ≤ Na. Similarly, we have B(b) ≤ Nb.
Therefore, we get a necessary condition on the minimum number

of cubes to cover exactly m minterms.

Corollary 1
If the minimum number of cubes to cover exactly m minterms is
η, then there exist two integers a, b ≥ 0 such that m = a − b and
B(a) ≤ 2η−1, B(b) ≤ 2η−1 − 1. �

The necessary condition can be verified by posing it as the op-
timal subtraction problem shown at the beginning of this section,
with t = 2η−1 − 1. If the minimum value of B(a) of the opti-
mal subtraction problem is greater than 2η−1, then the minimum
number of cubes to cover m minterms is greater than η.

3.2 Some Mathematical Properties of
the Optimal Subtraction Problem

In this section, we show some properties of the optimal subtrac-
tion problem. We use these to derive a dynamic-programming-
based solution to the optimal subtraction problem in Section 3.3.

We assume that m = (md . . .m0)2 with md = 0 and that
the optimal solution is a∗ = (a∗d . . . a

∗
0)2 and b∗ = (b∗d . . . b

∗
0)2

2.
Since a∗ and b∗ form a feasible solution to the optimal subtraction
problem, we have a∗ = m+ b∗ and B(b∗) =

∑d
i=0 b

∗
i ≤ t.

Suppose that a subsequence m[k + l − 1, k] of the binary rep-
resentation of m is a sequence of ones, i.e., m[k + l − 1, k] =
(1 . . . 1)2. If the binary addition m[k − 1, 0] + b∗[k − 1, 0] gener-
ates a carry 1, then b∗[k+l−1, k] must be in the form of (0 . . . 0)2.
On the other hand, if the binary addition m[k− 1, 0] + b∗[k− 1, 0]
generates a carry 0, then b∗[k+l−1, k] must be in either the form of
(0 . . . 00)2 or the form of (0 . . . 01)2. Mathematically, it is stated
by the following two lemmas.

Lemma 2
If for some 1 ≤ l ≤ d + 1 and 0 ≤ k ≤ d + 1 − l, such that
m[k + l − 1, k] = (1 . . . 1)2 and

m[k − 1, 0] + b∗[k − 1, 0] = 2k + a∗[k − 1, 0],

then b∗[k + l − 1, k] = (0 . . . 0)2. �

PROOF (SKETCH). By contraposition, we assume that the opti-
mal solution satisfies that

∑k+l−1
i=k b∗i > 0. Then, we have

a∗ = 2k+la∗[d, k + l] + 2kb∗[k + l − 1, k] + a∗[k − 1, 0]. (5)

Now consider b′ = 2k+lb∗[d, k + l] + b∗[k − 1, 0]. Then, we
have

a′ = m+ b′ = 2k+la∗[d, k + l] + a∗[k − 1, 0]. (6)

Since we assume that
∑k+l−1
i=k b∗i > 0, we have

B(b′) =

k−1∑
i=0

b∗i +

d∑
i=k+l

b∗i < B(b∗) ≤ t.

2We can choose a d large enough so that it guarantees that md = 0. Fur-
ther, if md = 0, there exists an optimal solution of a∗ and b∗ such that
their binary representations have d+ 1 bits.

Further, by Equation (5) and (6),

B(a′) =

k−1∑
i=0

a∗i+

d∑
i=k+l

a∗i < B(a∗) =

k−1∑
i=0

a∗i+

k+l−1∑
i=k

b∗i+

d∑
i=k+l

a∗i .

Therefore, a∗ and b∗ are not the optimal solution, which contra-
dicts the assumption. Therefore, the lemma holds.

Lemma 3
If for some 1 ≤ l ≤ d + 1 and 0 ≤ k ≤ d + 1 − l, such that
m[k + l − 1, k] = (1 . . . 1)2 and

m[k − 1, 0] + b∗[k − 1, 0] = a∗[k − 1, 0],

then b∗[k + l − 1, k + 1] = (0 . . . 0)2 and b∗k = 0 or 1. �

PROOF. The proof is similar to that of Lemma 2.

Suppose that a subsequence m[k + l − 1, k] of the binary rep-
resentation of m is a sequence of zeros, i.e., m[k + l − 1, k] =
(0 . . . 0)2. If the binary addition m[k − 1, 0] + b∗[k − 1, 0] gener-
ates a carry 0, then b∗[k+l−1, k] must be in the form of (0 . . . 0)2.
On the other hand, if the binary addition m[k− 1, 0] + b∗[k− 1, 0]
generates a carry 1, then b∗[k+l−1, k] must be in one of the forms
of (00 . . . 000)2, (00 . . . 001)2, (00 . . . 011)2, . . ., (01 . . . 111)2,
(11 . . . 111)2. Mathematically, this is stated by the following two
lemmas. The proofs of these are similar to that of Lemma 2.

Lemma 4
If for some 1 ≤ l ≤ d + 1 and 0 ≤ k ≤ d + 1 − l, such that
m[k + l − 1, k] = (0 . . . 0)2, and

m[k − 1, 0] + b∗[k − 1, 0] = a∗[k − 1, 0],

then b∗[k + l − 1, k] = (0 . . . 0)2. �

Lemma 5
If for some 1 ≤ l ≤ d + 1 and 0 ≤ k ≤ d + 1 − l, such that
m[k + l − 1, k] = (0 . . . 0)2 and

m[k − 1, 0] + b∗[k − 1, 0] = 2k + a∗[k − 1, 0],

then there exists a 0 ≤ r ≤ l, such that b∗[k + l − 1, k + r] =
(0 . . . 0)2 and b∗[k + r − 1, k] = (1 . . . 1)2. �

If the conditions of Lemma 5 are satisfied and if the subsequence
b∗[k+l−1, k] of the optimal solution b∗ is of the form (0 . . . 01 . . . 1)2,
then b′ = 2k+lb∗[d, k+ l]+b∗[k−1, 0] and a′ = m+b′ also form
an optimal solution. Mathematically, this is stated by the following
lemma.

Lemma 6
For any 2 ≤ l ≤ d+ 1 and 0 ≤ k ≤ d+ 1− l, such that

m[k + l − 1, k] = (0 . . . 0)2 (7)

and

m[k − 1, 0] + b∗[k − 1, 0] = 2k + a∗[k − 1, 0], (8)

if the optimal solution of b∗ satisfies that

b∗[k+l−1, k+r] = (0 . . . 0)2, b
∗[k+r−1, k] = (1 . . . 1)2, (9)

for some 1 ≤ r ≤ l− 1, then b′ = 2k+lb∗[d, k + l] + b∗[k − 1, 0]
and a′ = m+ b′ also form an optimal solution. �

PROOF (SKETCH). By Equation (7), (8), and (9), we have

a∗ = 2k+la∗[d, k + l] + 2k+r + a∗[k − 1, 0]. (10)

Now consider b′ = 2k+lb∗[d, k + l] + b∗[k − 1, 0]. Then,

a′ = 2k+la∗[d, k + l] + 2k + a∗[k − 1, 0]. (11)



By Equation (9) and the fact that r ≥ 1, we have

B(b′) =

k−1∑
i=0

b∗i +

d∑
i=k+l

b∗i < B(b∗) =

k−1∑
i=0

b∗i + r +

d∑
i=k+l

b∗i ≤ t.

Further, by Equation (10), and (11), we have

B(a′) =

k−1∑
i=0

a∗i + 1 +

d∑
i=k+l

a∗i = B(a∗)

Since a∗ and b∗ form an optimal solution, a′ and b′ also form an
optimal solution.

Note that the optimal solution b′ in Lemma 6 satisfies that b′[k+
l − 1, k] = (0 . . . 0)2. Based on Lemma 5 and 6, when a sub-
sequence m[k + l − 1, k] of the binary representation of m is a
sequence of zeros and the binary addition m[k − 1, 0] + b∗[k −
1, 0] generates a carry 1, we can restrict b∗[k + l − 1, k] to be
either in the form of (0 . . . 0)2 or in the form of (1 . . . 1)2. To-
gether with Lemma 2, 3, and 4, we can summarize the choices of
b∗[k + l − 1, k] for different combinations of m[k + l − 1, k] ∈
{(1 . . . 1)2, (0 . . . 0)2} and the carry of the binary summ[k−1, 0]+
b∗[k − 1, 0] in Table 2.

Table 2: The choices of b∗[k+l−1, k] according to different combinations
of m[k + l − 1, k] ∈ {(1 . . . 1)2, (0 . . . 0)2} and the carry of the binary
sum m[k − 1, 0] + b∗[k − 1, 0].

m[k + l − 1, k]
(1 . . . 11)2 (0 . . . 00)2

m[k − 1, 0] 0 (0 . . . 00)2 or
(0 . . . 00)2+b∗[k − 1, 0] (0 . . . 01)2

has carry 1 (0 . . . 00)2
(0 . . . 00)2 or
(1 . . . 11)2

3.3 A Dynamic-Programming-Based Solution
to the Optimal Subtraction Problem

In this section, we show a solution to the optimal subtraction
problem based on dynamic programming. The idea is that we can
treat the binary representation of m as a concatenation of alter-
nating subsequences of zeros and ones and construct an optimal
solution based on the optimal choices shown in Table 2.

First, we define a more general minimization problem.

Definition 5
Given integers m, i, l and ξ, such that m = (md . . .m0)2 with
md = 0, 0 ≤ i ≤ d and ξ ∈ {0, 1}, we define the problem
Q(i, l, ξ) to be the following minimization problem:

Minimize cost B(a), subject to the constraints that a, b ≥ 0
are integers whose binary representation have d + 1 − i bits, a =
m[d, i] + b+ ξ, and B(b) ≤ l.

Let the optimal solution of the problemQ(i, l, ξ) be a = a∗(i, l, ξ)
and b = b∗(i, l, ξ). Let A(i, l, ξ) be the minimum cost. �

Note that the binary representations of a∗(i, l, ξ) and b∗(i, l, ξ)
have d + 1 − i bits. By a similar notation as that in Definition 2,
for two integers 0 ≤ k ≤ j ≤ d − i, we write a∗(i, l, ξ)[j, k] to
denote a subsequence from bit j to bit k of the binary sequence of
a∗(i, l, ξ). Since a∗(i, l, ξ) = b∗(i, l, ξ) + m[d, i] + ξ, we only
need to find the optimal solution of b∗(i, l, ξ).

Notice that when l < 0, there are no feasible solutions to the
problem Q(i, l, ξ). Thus, when l < 0, we define A(i, l, ξ) = ∞,
a∗(i, l, ξ) = b∗(i, l, ξ) = φ. In what follows, we consider the
problem Q(i, l, ξ) with l ≥ 0.

By Definition 5, the optimal subtraction problem is the prob-
lemQ(0, t, 0). The following four theorems show that the problem

Q(i, l, ξ) exhibits optimal substructure [9]: an optimal solution to
the problem contains within it optimal solutions to subproblems.

Theorem 3
Suppose that for some 0 ≤ i < j ≤ d, m[j − 1, i] = (0 . . . 0)2.
Given l ≥ 0, and ξ = 0, then A(i, l, ξ) = A(j, l, 0) and the
optimal solution b∗(i, l, ξ) = [b∗(j, l, 0) : (0 . . . 0)2], where the
constant suffix sequences are of length j − i. �

PROOF (SKETCH). Sincem[j−1, i] = (0 . . . 0)2 and the carry-
in ξ to the addition m[j − 1, i] + b∗(i, l, ξ)[j − i− 1, 0] is 0, this
case corresponds to the conditions of Lemma 4. Therefore,

b∗(i, l, ξ)[j − i− 1, 0] = (0 . . . 0)2 (12)

and hence,

B(b∗(i, l, ξ)) = B(b∗(i, l, ξ)[d− i, j − i]). (13)

Since a∗(i, l, ξ) = b∗(i, l, ξ)+m[d, i]+ξ, then by Equation (12),
we have

a∗(i, l, ξ)[j − i− 1, 0] = (0 . . . 0)2 (14)

and

a∗(i, l, ξ)[d− i, j − i] = m[d, j] + b∗(i, l, ξ)[d− i, j − i]. (15)

Therefore, due to Equation (14), we have

B(a∗(i, l, ξ)) = B(a∗(i, l, ξ)[d− i, j − i]). (16)

Let u = a∗(i, l, ξ)[d − i, j − i] and v = b∗(i, l, ξ)[d − i, j −
i]. Then, based on Equation (15), we have u = m[d, j] + v and
based on Equation (13), we have B(v) ≤ l. Therefore, u and v
form a feasible solution to the problem Q(j, l, 0). Further, based
on Equation (16), we have B(u) = B(a∗(i, l, ξ)).

We could prove by contraposition that u and v form an optimal
solution to the problem Q(j, l, 0). Therefore, A(j, l, 0) = B(u) =
B(a∗(i, l, ξ)) = A(i, l, ξ) and

v = b∗(i, l, ξ)[d− i, j − i] = b∗(j, l, 0).

Combining the above equation with Equation (12), we prove the
theorem.

Theorem 4
Suppose that for some 0 ≤ i < j ≤ d, m[j − 1, i] = (0 . . . 0)2.
Given, l ≥ 0, and ξ = 1, then

A(i, l, ξ) = min{A(j, l, 0) + 1, A(j, l − j + i, 1)}.

IfA(i, l, ξ) = A(j, l, 0)+1, then the optimal solution b∗(i, l, ξ) =
[b∗(j, l, 0) : (0 . . . 00)2], where the constant suffix sequences are
of length j − i.

If, on the other hand, A(i, l, ξ) = A(j, l − j + i, 1), then the
optimal solution b∗(i, l, ξ) = [b∗(j, l − j + i, 1) : (1 . . . 11)2],
where the constant suffix sequences are of length j − i. �

PROOF. The proof is similar to that of Theorem 3. The only
difference is that, since this case corresponds to the conditions of
Lemma 5, b∗(i, l, ξ)[j−i−1, 0] can be either (0 . . . 0)2 or (1 . . . 1)2.
We need to compare the minimum costs for the two cases of
b∗(i, l, ξ)[j − i− 1, 0] and choose the smaller one.

Similarly, we can prove the following two theorems.

Theorem 5
Suppose that for some 0 ≤ i < j ≤ d, m[j − 1, i] = (1 . . . 1)2.
Given l ≥ 0, and ξ = 0, then

A(i, l, ξ) = min{A(j, l, 0) + j − i, A(j, l − 1, 1)}.

If A(i, l, ξ) = A(j, l, 0) + j − i, then the optimal solution
b∗(i, l, ξ) = [b∗(j, l, 0) : (0 . . . 00)2], where the constant suffix
sequences are of length j − i.



If, on the other hand, A(i, l, ξ) = A(j, l − 1, 1), then the opti-
mal solution b∗(i, l, ξ) = [b∗(j, l − 1, 1) : (0 . . . 01)2], where the
constant suffix sequences are of length j − i. �

Theorem 6
Suppose that for some 0 ≤ i < j ≤ d, m[j − 1, i] = (1 . . . 1)2.
Given l ≥ 0, and ξ = 1, then A(i, l, ξ) = A(j, l, 1) and the
optimal solution b∗(i, l, ξ) = [b∗(j, l, 1) : (0 . . . 0)2], where the
constant suffix sequences are of length j − i. �

We treatm as a concatenation of p ≥ 1 alternating subsequences
of zeros and ones prefixing with a subsequence of zeros (since
md = 0), that is, there exist p + 1 integers 0 = i0 < i1 < · · · <
ip = d+ 1, such that

m[ip−k − 1, ip−k−1] =

{
(0 . . . 0)2, if 0 ≤ k ≤ p− 1 is even
(1 . . . 1)2, if 0 ≤ k ≤ p− 1 is odd

(17)
If p = 1, then m is just a sequence of zeros and thus, m = 0.

The solution to the optimal subtraction problem is a∗ = b∗ = 0.
Now we suppose that p ≥ 2. We could assume that the last

subsequence ofm, m[i1−1, i0], is a sequence of ones. Otherwise,
the last subsequencem[i1−1, i0] contains all zeros. Since the input
carry is 0, this case corresponds to the situation of Theorem 3 with
i = 0 and j = i1. Therefore, to solve the problem Q(0, t, 0), it
is equivalent to solve the problem Q(i1, t, 0), which is the optimal
subtraction problem on m′ = m[d, i1], whose last subsequence is
a sequence of ones.

Since the first subsequence is a sequence of zeros and the last
subsequence is a sequence of ones, the total number of alternating
subsequences p is even. Let p = 2q, where q ≥ 1 is an integer.
Then, for any 0 ≤ r ≤ q − 1, m[i2r+1 − 1, i2r] is a sequence
of ones and m[i2r+2 − 1, i2r+1] is a sequence of zeros. We have
the following two theorems which give recursive relations on the
optimal solutions of the problem Q(i2r, l, 0) and Q(i2r+1, l, 1),
respectively.

Theorem 7
For any 0 ≤ r ≤ q − 2 and l ≥ 0, the optimal solution of the
problem Q(i2r, l, 0) relates to the optimal solution of the prob-
lem Q(i2r+1, l − 1, 1) and the optimal solution of the problem
Q(i2r+2, l, 0) in the following way:

A(i2r, l, 0) = min{A(i2r+1, l−1, 1), A(i2r+2, l, 0)+i2r+1−i2r}.

If A(i2r, l, 0) = A(i2r+1, l − 1, 1), then b∗(i2r, l, 0) =
[b∗(i2r+1, l − 1, 1) : (0 . . . 01)2], where the constant suffix se-
quences are of length i2r+1 − i2r .

If, on the other hand, A(i2r, l, 0) = A(i2r+2, l, 0) + i2r+1 −
i2r , then b∗(i2r, l, 0) = [b∗(i2r+2, l, 0) : (0 . . . 00)2], where the
constant suffix sequence is of length i2r+2 − i2r . �

PROOF. Since m[i2r+1 − 1, i2r] = (1 . . . 1)2, by Theorem 5,

A(i2r, l, 0) = min{A(i2r+1, l − 1, 1),

A(i2r+1, l, 0) + i2r+1 − i2r}.
(18)

If A(i2r, l, 0) = A(i2r+1, l − 1, 1), then

b∗(i2r, l, 0) = [b∗(i2r+1, l − 1, 1) : (0 . . . 01)2],

where the constant suffix sequences are of length i2r+1 − i2r .
If, on the other hand,A(i2r, l, 0) = A(i2r+1, l, 0)+i2r+1−i2r ,

then

b∗(i2r, l, 0) = [b∗(i2r+1, l, 0) : (0 . . . 00)2], (19)

where the constant suffix sequences are of length i2r+1 − i2r .
Since m[i2r+2 − 1, i2r+1] = (0 . . . 0)2, by Theorem 3,

A(i2r+1, l, 0) = A(i2r+2, l, 0), (20)

and

b∗(i2r+1, l, 0) = [b∗(i2r+2, l, 0) : (0 . . . 00)2], (21)

where the constant suffix sequences are of length i2r+2 − i2r+1.
Therefore, by Equation (18) and (20), we have

A(i2r, l, 0) = min{A(i2r+1, l−1, 1), A(i2r+2, l, 0)+i2r+1−i2r}.

If A(i2r, l, 0) = A(i2r+2, l, 0) + i2r+1 − i2r , then based on
Equation (19) and (21), we have

b∗(i2r, l, 0) = [b∗(i2r+2, l, 0) : (0 . . . 00)2],

where the constant suffix sequence is of length i2r+2 − i2r .

Theorem 8
For any 0 ≤ r ≤ q − 2 and l ≥ 0, the optimal solution of
the problem Q(i2r+1, l, 1) relates to the optimal solution of the
problem Q(i2r+2, l, 0) and the optimal solution of the problem
Q(i2r+3, l − i2r+2 + i2r+1, 1) in the following way:

A(i2r+1, l, 1) = min{A(i2r+2, l, 0) + 1,

A(i2r+3, l − i2r+2 + i2r+1, 1)}.

If A(i2r+1, l, 1) = A(i2r+2, l, 0) + 1, then

b∗(i2r+1, l, 1) = [b∗(i2r+2, l, 0) : (0 . . . 00)2],

where the constant suffix sequences are of length i2r+2 − i2r+1.
If, on the other hand,

A(i2r+1, l, 1) = A(i2r+3, l − i2r+2 + i2r+1, 1),

then

b∗(i2r+1, l, 1) = [b∗(i2r+3, l−i2r+2+i2r+1, 1) : (0 . . . 01 . . . 1)2],

where the constant suffix sequence has i2r+3 − i2r+2 zeros and
i2r+2 − i2r+1 ones. �

PROOF. The proof is similar to that of Theorem 7.

The problem Q(ip−1, l, 1) and Q(ip−2, l, 0) are the base cases
of the recursion. Their solutions are straightforward and shown by
the following lemma.

Lemma 7
For any l ≥ 0, A(ip−1, l, 1) = 1 and b∗(ip−1, l, 1) = 0. For
any l ≥ 1, A(ip−2, l, 0) = 1 and b∗(ip−2, l, 0) = 1. For l = 0,
A(ip−2, l, 0) = ip−1 − ip−2 and b∗(ip−2, l, 0) = 0. �

Let

τ = 1 +

q−1∑
r=1

(i2r − i2r−1). (22)

For the optimal subtraction problem Q(0, t, 0) on m > 0, when
t ≥ τ , the minimum cost is A(0, t, 0) = 1, which is stated by the
following theorem.

Theorem 9
Given m > 0, if t ≥ τ , then A(0, t, 0) = 1, and a∗ = 2ip−1 and
b∗ = 2ip−1 −m. �

PROOF. Since 0 < m ≤ a∗ = m + b∗, the minimum cost
B(a∗) ≥ 1. Since for any 0 ≤ r ≤ q − 1, m[i2r+1 − 1, i2r] =
(1 . . . 1)2 and m[i2r+2 − 1, i2r+1] = (0 . . . 0)2, then

m =

q−1∑
r=0

i2r+1−1∑
j=i2r

2j < 2i2q−1 = 2ip−1 .

Let b = 2ip−1 −m > 0. Then,

b = 2ip−1 −m = 1 +

q−1∑
r=1

i2r−1∑
j=i2r−1

2j .



Therefore, B(b) = 1 +
∑q−1
r=1(i2r − i2r−1) = τ ≤ t, and

thus, b and a = b + m form a feasible solution to the optimal
subtraction problem. Note that a = 2ip−1 . Thus, B(a) = 1. By
the optimality of B(a∗) and the fact that B(a∗) ≥ 1, we have
1 ≤ B(a∗) ≤ B(a) = 1. Therefore, A(0, t, 0) = B(a∗) = 1, and
a and b form an optimal solution.

Based on Theorem 9, we only need to use the recursive relations
shown in Theorem 7 and 8 to solve the optimal subtraction prob-
lem when t < τ . The procedure to solve the optimal subtraction
problem is shown in Algorithm 1.

Algorithm 1 OSP(m, t): the procedure to solve the optimal subtraction
problem with m ≥ 0 and t ≥ 0.

1: {Given two integersm ≥ 0 and t ≥ 0, return the minimum costC and
the optimal solution a∗ and b∗.}

2: if m = 0 then C ⇐ 0; a∗ ⇐ 0; b∗ ⇐ 0; return (C, a∗, b∗);
3: (m,ntz) ⇐ RmvTailZero(m); {Remove tailing zeros and ntz stores

the number of tailing zeros.}
4: (i0, i1, . . . ip) ⇐ SubSeq(m); {Get the position indices of the alter-

nating subsequences.}
5: q ⇐ p/2; τ ⇐ 1 +

∑q−1
r=1(i2r − i2r−1);

6: if t ≥ τ then
7: C ⇐ 1; a∗ ⇐ 2ip−1 ; b∗ ⇐ a∗ −m;
8: a∗ ⇐ [a∗ : zero(ntz)]; b∗ ⇐ [b∗ : zero(ntz)]; {Append tailing

zeros.}
9: return (C, a∗, b∗);

10: for l⇐ 0 to t do T (p− 1, l)⇐ 1;
11: T (p− 2, 0)⇐ ip−1 − ip−2;
12: for l⇐ 1 to t do T (p− 2, l)⇐ 1;
13: for r ⇐ q − 2 to 0 do
14: for l⇐ 0 to t do
15: T (2r + 1, l)⇐ min{T (2r + 2, l) + 1,

T (2r + 3, l − i2r+2 + i2r+1)};
16: for l⇐ 0 to t do
17: T (2r, l)⇐ min{T (2r+1, l−1), T (2r+2, l)+i2r+1−i2r};
18: C ⇐ T (0, t);
19: b∗ ⇐ OptSln(T, t, i0, . . . , ip); {Construct the optimal solution b∗.}
20: a∗ ⇐ m+ b∗; a∗ ⇐ [a∗ : zero(ntz)]; b∗ ⇐ [b∗ : zero(ntz)];
21: return (C, a∗, b∗);

The procedure to solve the optimal subtraction problem begins
by handling the trivial case m = 0 (Line 2). Then, it removes the
tailing zeros of m by calling the function RmvTailZero(m), which
returns the new m and the number of tailing zeros ntz (Line 3). In
Line 4, it calls the function SubSeq(m) to get the position indices
of the alternating subsequences of zeros and ones of m, according
to Equation (17). In Lines 6–9, it deals with the case that t ≥ τ , in
which the solution is given by Theorem 9. In Line 8, the function
zero(n) generates a sequence of n zeros. The optimal solution for
the original m is formed by appending ntz zeros to the optimal
solution for the new m.

If t < τ , then a bottom-up dynamic-programming-based ap-
proach is used to solve the problem based on the recursive relations
shown in Theorem 7 and 8. The procedure uses an auxiliary table
T of p rows and t + 1 columns to store the optimal costs for sub-
problems Q(ik, l, ξ). For any 0 ≤ k ≤ p− 1 and 0 ≤ l ≤ t, table
entry T (k, l) is defined as

T (k, l) =

{
A(ik, l, 0), if k is even
A(ik, l, 1), if k is odd

The procedure begins from the base cases in Lines 10–12. By
Lemma 7, for any 0 ≤ l ≤ t, T (p− 1, l) = A(ip−1, l, 1) = 1, and

T (p− 2, l) = A(ip−2, l, 0) =

{
ip−1 − ip−2, if l = 0

1, if 1 ≤ l ≤ t

In Lines 13–17, the procedure computes T (k, l) in decreasing
order of k from p−3 to 0. By Theorem 7 and 8, we have that when

0 ≤ r ≤ q − 2,

T (2r + 1, l) = A(i2r+1, l, 1)

= min{A(i2r+2, l, 0) + 1, A(i2r+3, l − i2r+2 + i2r+1, 1)}
= min{T (2r + 2, l) + 1, T (2r + 3, l − i2r+2 + i2r+1)}.

(23)

and

T (2r, l) = A(i2r, l, 0)

= min{A(i2r+1, l − 1, 1), A(i2r+2, l, 0) + i2r+1 − i2r}
= min{T (2r + 1, l − 1), T (2r + 2, l) + i2r+1 − i2r}.

(24)

After getting the table T , the optimal cost is C = T (0, t) and
the optimal solution b∗ is constructed based on T by the procedure
OptSln(T, t, i0, . . . , ip), which is shown in Algorithm 2. The op-
timal solution a∗ is a∗ = m + b∗. The final optimal solution is
formed by appending ntz zeros to a∗ and b∗ (Line 20).

Algorithm 2 OptSln(T, t, i0, . . . , ip): the procedure to construct the op-
timal solution b∗ from the optimal cost table T .

1: {Given the optimal cost table T , integer t ≥ 0, and the position indices
of subsequences i0, . . . , ip, return the optimal solution b∗.}

2: k ⇐ 0; l⇐ t; b∗ ⇐ φ; {Let the initial b∗ be an empty sequence.}
3: while k < p− 2 do
4: if k is even then
5: if T (k, l) = T (k + 1, l − 1) then
6: b∗ ⇐ [zero(ik+1− ik − 1) : 1 : b∗]; l⇐ l− 1; k ⇐ k+ 1;
7: else {T (k, l) = T (k + 2, l) + ik+1 − ik}
8: b∗ ⇐ [zero(ik+2 − ik) : b∗]; k ⇐ k + 2;
9: else {k is odd}

10: if T (k, l) = T (k + 1, l) + 1 then
11: b∗ ⇐ [zero(ik+1 − ik) : b∗]; k ⇐ k + 1;
12: else {T (k, l) = T (k + 2, l − ik+1 + ik)}
13: b∗ ⇐ [zero(ik+2 − ik+1) : one(ik+1 − ik) : b∗];
14: l⇐ l − ik+1 + ik; k ⇐ k + 2;
15: if k = p− 2 and l ≥ 1 then b∗ ⇐ [1 : b∗];
16: else {k = p− 1, or k = p− 2 and l = 0} b∗ ⇐ [0 : b∗];
17: return b∗;

Algorithm 2 constructs the optimal solution b∗ based on the opti-
mal cost table T . In the procedure, the function zero(n) generates a
sequence of n zeros and the function one(n) generates a sequence
of n ones. b∗ is constructed from its end to its beginning, based on
the optimal substructure shown in Theorem 7 and 8 (Lines 3–14)
and the base case solution shown in Lemma 7 (Lines 15–16).

Time complexity: When t ≥ τ , the time complexity of Algo-
rithm 1 is O(d), where d is the number of bits in the binary repre-
sentation of m minus 1. When t < τ , the part of Algorithm 1 that
constructs table T has time complexity asO(p · t). Since p ≤ d+1
and t < τ < ip−2− i1 +1 < d+1, therefore, the time complexity
of constructing table T is O(d2). The procedure to costruct opti-
mal solution, Algorithm 2, has time complexity as O(d). Thus, the
total time complexity of Algorithm 1 is O(d2) when t < τ . Thus,
in either the case t ≥ τ or the case t < τ , the time complexity of
Algorithm 1 is O(d2).

Example 4
Solve the optimal subtraction problem for t = 5 and

m = (011001001111011100)2.

Solution: We first remove the tailing zeros of m and get the new
m = (0110010011110111)2. By examining m, we get p = 8,
q = 4, and the position indices of the alternating subsequences of
m are i0 = 0, i1 = 3, i2 = 4, i3 = 8, i4 = 10, i5 = 11, i6 = 13,
i7 = 15, and i8 = 16. By Equation (22), we get τ = 6 > t.
Therefore, we need to construct the table T to get the optimal cost.
The table T constructed is shown in Table 3. Note that in the table,



Table 3: Table T constructed by Algorithm 1 to get the optimal cost of the
optimal subtraction problem for m = (0110010011110111)2 and t = 5.

k
l

0 1 2 3 4 5
7 1∗ 1 1 1 1 1
6 2 1 1 1 1 1
5 3 2 1∗ 1 1 1
4 3 2 2 1∗ 1 1
3 4 3 3 2∗ 1 1
2 7 4 3 3 2 1
1 8 4 3 3 2∗ 1
0 10 7 4 3 3 2∗

the row indices range from 7 to 0 and the column indices range
from 0 to 5.

From Table 3, we get the optimal cost for t = 5 is 2. Based
on the optimal cost, we can construct the optimal solution b∗ by
calling Algorithm 2. The entries in the table T with a superscript
∗ are those entries that lead to the optimal cost for t = 5. We
use the entry T (0, 5) to illustrate the construction of the optimal
solution b∗. According to Algorithm 2, since k = 0 is even and
T (0, 5) = T (1, 4), then the next entry we examine is T (1, 4) and
the partial optimal solution for b∗ is b∗[2, 0] = (001)2. Finally,
we get the optimal solution for b∗ is b∗ = (0001110000001001)2.
After appending tailing zeros back, we eventually have

b∗ = (000111000000100100)2,

a∗ = (100000010000000000)2. �

3.4 Achieving the Lower Bound on
the Minimum Number of Cubes

We could get the lower bound on the minimum number of cubes
η to cover m minterms by solving the optimal subtraction prob-
lem on m with t = τ − 1. As shown in Algorithm 1, by solving
that optimal subtraction problem, we can get T (0, 0), T (0, 1), . . .,
T (0, τ − 1). Further, by Theorem 9, we know that for k ≥ τ ,
T (0, k) = 1. Therefore, for all k ≥ 0, we know T (0, k), the op-
timal cost of the optimal subtraction problem on m with t = k.
Then, by Corollary 1, for any number i such that T (0, 2i−1−1) >
2i−1, the minimum number of cubes η is greater than i. There-
fore, a lower bound ηl on η is the smallest number ηl such that
T (0, 2ηl−1−1) ≤ 2ηl−1, which can be obtained by examining the
array T (0, k).

Example 5
For them of Example 4, we show how to get the lower bound on the
minimum number of cubes η to cover m minterms. By Example 4,
we have τ = 6 and the last row of Table 3 gives T (0, 0), . . . ,
T (0, τ − 1). By examining the last row, we can see that when
ηl = 2, T (0, 2ηl−1 − 1) = T (0, 1) = 7 > 2ηl−1 = 2. However,
when ηl = 3, T (0, 2ηl−1 − 1) = T (0, 3) = 3 < 2ηl−1 = 4.
Therefore, the smallest number ηl such that T (0, 2ηl−1 − 1) ≤
2ηl−1 is ηl = 3. Thus a lower bound on η is 3. �

4. EXPERIMENTAL RESULT
We tested our proposed algorithm on 53 two-level logic bench-

marks that accompany the two-level logic minimizer Espresso [10].
For each benchmark, we counted the number of minterms covered
by the set of cubes in that circuit3 and take that number as the input
m to our program. Due to the page limit, we only list the results
for 15 of those benchmarks in Table 4. The second column of the

3We ignore the output part of the cubes; we assume that the number of
outputs is one.

table shows how many cubes each circuit has after it was mini-
mized by Espresso [11]. The third column shows the number of
inputs of each circuit and the fourth column shows the number of
minterms covered by each circuit, in hexadecimal form. The fifth
column lists the lower bound on the minimum number of cubes to
cover the corresponding number of minterms. The sixth column
lists the upper bound according to Theorem 1. For all benchmarks,
the runtime of our algorithm was negligible.

From Table 4, we can see that all upper bounds are less than
the numbers of cubes of the corresponding circuits after two level
minimization, which is not surprising. The benchmark circuits can
be viewed as a random assignments of minterms. Although the
proposed upper-bound solution is not sophisticated, it still has an
advantage over these solutions, based on random assignments of
minterms.

Surprisingly, for some of the benchmarks, e.g., newapla1,
newcond, bca, the upper bound is equal to the lower bound; this
indicates that the solution corresponding to the upper bounds is ac-
tually optimal. For some of the other benchmarks, e.g., dc2, exp,
in1, the gap between the upper and lower bound is small; this
indicates that the solution corresponding to the upper bound is sub-
optimal, but quite good.

In Table 5, we list the numbers of benchmarks of the total 53
benchmarks that we tested with gaps between the upper and lower
bounds of 0, 1, 2, 3, and more than 3. For about 10% of the bench-
marks, the lower bound equals the upper bound. For nearly 20%,
the gap is one. Thus, we conclude that our method solves the prob-
lem of minimizing the number of cubes to cover a given number of
minterms for a very respectable percentage of test cases.

Table 4: Lower bound and upper bound on the minimum number of cubes
to cover a specific number of minterms derived from benchmark circuits.

circuit #cubes #inputs #minterms lower upper
(hex) bound bound

newapla1 6 12 109 3 3
dc2 10 8 C3 3 4
exp 14 8 59 3 4

newtpla 14 15 DF2 3 8
shift 21 19 7FF01 2 12
b3 22 32 CDD60000 4 10

newcond 28 11 288 3 3
b4 29 33 1EFEA8C00 4 16
in2 30 19 66950 4 8
in5 37 24 8C2900 3 6
in1 55 16 6900 3 4
ex7 58 16 DBEA 3 11
bca 72 26 94000 3 3
x1dn 80 27 49E0D80 3 10
ts10 128 22 7FFF8 2 16

Table 5: Numbers and percentages of benchmarks with gaps between up-
per bounds and lower bounds equal to 0, 1, 2, 3 and larger than 3.

bound gap 0 1 2 3 > 3
#circuits 6 9 5 9 24

percentage (%) 11 17 9 17 45

5. CONCLUSION AND FUTURE WORK
This work is part of our broader effort to develop a methodology

to synthesize digital circuits that implement probabilistic computa-
tion. The approach is motivated by concerns over variability and
defects. When cast in terms of probabilities, digital computation
becomes more robust. The paradigm provides significant tolerance
to soft errors (i.e., bit flips). This tolerance scales gracefully to high
error rates.



In this paper, we considered the problem of synthesizing two-
level combinational logic to generate arbitrary probability values
from unbiased input probability value of 0.5. With n inputs, op-
timizing the logic to generate a probability value m

2n
entails mini-

mizing the number of cubes to cover exactly m minterms. In this
problem, the only requirement is that the union of a set of cubes
covers m minterms in the Boolean space; which m minterms are
covered does not matter. We provided both an upper bound and
a strong lower bound on the minimum number of cubes to cover a
given number of minterms. The lower bound is obtained by solving
an instance of what we call the optimal subtraction problem on m.
We proposed a dynamic-programming-based solution.

A future direction of research is to develop more sophisticated
upper bounds. This, we estimate, would further reduce the gap be-
tween the lower bound and the upper bound for many test cases.
For test cases where the upper bound is still significantly larger
than the lower bound, we intend to develop a search based algo-
rithm. This algorithm would begin at the lower bound and search
upwards.
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