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This paper describes a scheme for implementing a binary counter with chemical reactions. The value
of the counter is encoded by logical values of “0” and “1” that correspond to the absence and presence
of specific molecular types, respectively. It is incremented when molecules of a trigger type are injected.
Synchronization is achieved with reactions that produce a sustained three-phase oscillation. This oscillation
plays a role analogous to a clock signal in digital electronics. Quantities are transferred between molecular
types in different phases of the oscillation. Unlike all previous schemes for chemical computation, this scheme
is dependent only on coarse rate categories for the reactions (“fast” and “slow”). Given such categories, the
computation is exact and independent of the specific reaction rates. Although conceptual for the time being,
the methodology has potential applications in domains of synthetic biology such as biochemical sensing and
drug delivery. We are exploring DNA-based computation via strand displacement as a possible experimental
chassis.

1. Introduction

In the nascent field of synthetic biology, researchers are striving to create biological systems
with functionality not seen in nature. The field aims to apply engineering methods to biology in
a deliberate way. Beyond engineering ends, such methods also provide a constructive means to
validating new science. Understanding is achieved by constructing and testing simplified systems
from the bottom up, teasing out and nailing down fundamental principles in the process.1

We bring a particular mindset to tackle the problem of synthesizing new biological functions. We
tackle synthesis at a conceptual level, working with abstract molecular types. Working at this level,
we implement computational constructs, that is to say, chemical reaction networks that compute
specific outputs as a function of inputs. Then we map the conceptual designs onto specific chemical
substrates.

We model the chemical dynamics in terms of mass-action kinetics:2,3 reaction rates are propor-
tional to (1) the quantities of the participating molecular types; and (2) reaction constants. We aim for
robust constructs: systems that compute exact results independently of specific reaction constants.
All of our designs are formulated in terms of two coarse rate categories (e.g., “fast” and “slow”).
Given such categories, the computation is exact and independent of the specific reaction rates.

The analogy for this approach is the design flow for digital electronics, where different designs
are systematically explored at a technology-independent level, in terms of Boolean functions. Once
the best design is found, it is mapped to specific technology libraries in silicon.4 An overarching
goal of the digital paradigm is robustness: digital electronics delivers voltage values that correspond
to zero and one reliably, in spite of fluctuations in the signals.
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In our prior and related work, we have described a variety of computational constructs
for chemical reaction networks: logical operations such as copying, comparing and increment-
ing/decrementing;5 programming constructs such as “for” and “while” loops;6 arithmetic operations
such as multiplication, exponentiation and logarithms;5,6 and signal processing operations such as
filtering.7

In this paper, we describe a scheme for implementing a binary counter with chemical reactions.
The value of the counter is encoded by logical values of “0” and “1” that correspond to the absence
and presence of specific molecular types, respectively. It is incremented by one every time molecules
of a trigger type are injected. Synchronization is achieved with reactions that produce a sustained
three-phase oscillation. This oscillation plays a role analogous to a clock signal in digital electronics.
Quantities are transferred between molecular types in different phases of the oscillation.

This paper is organized as follows. In Section 2, we summarize the main principles and the
basic algorithm for our implementation of the binary counter. In Section 3, we introduce some
specific concepts that we use, namely the concepts of “prereactants” and “absence indicators.” We
also introduce the essential synchronization mechanism that we use, a three-phase oscillation that
we call “red-green-blue” (RGB). Then we present the design of the molecular counter. In Section 4,
we present simulation results obtained with an ordinary differential equations (ODE) solver. Finally,
in Section 5, we discuss DNA strand-displacement reactions as a possible experimental chassis for
our method.8

2. Counting in Binary

We first review some of the algorithmic principles of counting in binary. Then we present an
intuitive description of our approach to implementing a molecular binary counter.

Z Y X

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
...

...
...

Fig. 1. Sequence of values in a
three-bit binary counter.
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Fig. 2. Basic functionality of the molecular counter.



2.1. General Principles

Figure 1 lists the binary numbers that a 3-bit binary counter cycles through, starting at “000” and
ending at “111.”

(1) Every time the binary count is incremented, the least significant (i.e., right-most) bit is flipped.
For instance, in the sequence 000 → 001 → 010 → 011 → 100 → 101, note that the least
significant bit (underlined) alternates: 0 → 1 → 0 → 1 → 0 → 1.

(2) Every time the binary count is incremented, exactly one bit changes from “0” to “1”. (However,
several bits may change from “1” to “0.”)
For instance, in the sequence 000 → 001 → 010 → 011 → 100 → 101, the bits that change from
“0” to “1” are underlined. Note that there is exactly one such bit each time. (As will be discussed
in Section 3, this principle is important for synchronizing our molecular counter.)

(3) When the binary count is incremented, a given bit changes from “0” to “1” only if all bits of
lesser significance (i.e., all bits to the right of it ) are “1.”
For instance, in the sequence 000 → 001 → 010, the second bit changes from “0” to “1” when
the first bit is “1.” In the sequence 011 → 100 → 101 the third bit changes from “0” to “1” when
the first and second bits are “1.”

2.2. Towards a Molecular Binary Counter

X0 1

Produce X

Y0 1

Produce Y

Z0 1

Produce Z

Restart 

Counter

Inject Xinj

Start Counter

Consume Y

Consume X

Consume Z

Fig. 3. Basic algorithm for the molecular counter.

Throughout this paper, the exposition will be
in terms of a three-bit binary counter. The ideas
can readily be generalized to an n-bit counter. We
encode the binary values of “0” and “1” by the
presence or absence of specific molecular types,
respectively. For the binary sequence in Figure 1,
we use the types X, Y and Z. (We will call these
“bit types.”) For instance, if types X and Z are
present, while type Y is absent, the corresponding
binary number is “101”.

Figure 2 shows the basic functionality of our
molecular counter. Every time we want to incre-
ment it, we inject some amount of a “trigger” type
Xinj. The system consumes Xinj and increments
the binary value specified by the quantities of X,
Y and Z. Once all the molecules of Xinj have been
consumed, the counter can be incremented again.

Tables 2 and 3 specify the set of chemical re-
actions for our three-bit counter. In order to eluci-
date the final design, we will provide a succession
of design refinements:

(1) We start with a simple intuitive set of reactions, ignoring issues such as synchronization (Sec-
tion 2.3).



(2) We introduce two specific concepts that we use to implement the counter: the concept of “pre-
reactants” and that of “absence indicators” (Section 3.1).

(3) We introduce our synchronization mechanism: a three-phase chemical oscillation that we call
“red-green-blue” (RGB) (Section 3.2).

(4) Finally, we provide the full design of the counter, consisting of 24 chemical reactions (Sec-
tions 3.3).

2.3. Intuitive Model

A molecular counter cannot directly set bits to “0” or to “1”; rather the functionality must be
achieved by reactions that produce and consume the molecular types corresponding to these bits.
Call the three bits of the counter, the high, middle and low bits, encoded by the presence/absence of
types Z, Y and X, respectively. The low bit is set to “1” by producing molecules of X whenever the
type Xinj is injected into the system:

Xinj → X. (1)

The middle bit is set to “1” by producing molecules of Y whenever the type X is present:

X → Y. (2)

The high bit is set to “1” by producing molecules of Z whenever both types X and Y present:

X + Y → Z. (3)

Note that, in each of these reactions, the system consume molecules of X, Y and Z, reseting the cor-
responding bits to “0.” When molecules of all three types X, Y and Z are present, the corresponding
binary number is “111”. The counter is reset:

X + Y + Z → ∅. (4)

(The symbol ∅ as a product indicates “nothing”, meaning that the type degrades into products that
are no longer tracked or used.)

A flowchart for the algorithm that we use is given in Figure 3. In the figure, decisions to produce
and consume molecular types are made according to the presence and absence of types. (As we
refine the design, we will have to implement these “decisions” through chemical reactions.) Let us
assume the current binary number is set to “101”. This number corresponds to the absence of Y and
the presence of X and Z. Suppose that we inject the trigger type Xinj; we move to the first decision
box. Since X is present, we do not produce more of it. We consume molecules of X and move to the
next decision box. Here we check for the presence of type Y . Since Y is absent, we move to the left
and produce molecules of Y . With the absence of X and the presence of Y and Z, the binary number
has changed to “110”. Next we return to “idle state,” waiting for the next injection.

3. Synchronization

The challenge in setting up the molecular counter is that all the chemical reactions fire asyn-
chronously. Each reaction starts producing its products as soon as its reactants are available. If these
products participate as reactants in other reactions, then they immediately start getting consumed.



Accordingly, with Reactions 1–4, we will not get a binary counter, encoded by the presence and
absence of X, Y and Z. Rather, we will get a jumble of all of these. In particular, note that with
Reaction 2, Y is produced from X. As soon as molecules of Y are available, Reaction 3 starts con-
suming molecules of X and Y to produce molecules of Z. This contradicts the second principle
described in Section 2.1: we should only change one bit from “0” to “1” in each increment opera-
tion. To mitigate against this issue, we introduce additional molecular types called “prereactants.”
We also introduce “absence indicator” types to coordinate the transfer between prereactants and
reactants.

3.1. Prereactants and Absence Indicators
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Fig. 4. Modified algorithm for the molecular counter, with
prereactants and absence indicators.

We use the following notation to describe
these concepts. For each bit i of the
counter,

(1) Qi is a bit type corresponding to
ith bit. (For our three-bit molecular
counter, we have Q1 = X, Q2 = Y

and Q3 = Z.)
(2) aqi is an absence indicator type for

type Qi. (For our three-bit molecular
counter, we have aq1 = ax, aq2 = ay

and aq3 = az.)
(3) Qpi is a prereactant type for Qi. (For

our three-bit molecular counter, we
have Qp1 = Xp, Qp2 = Yp and Qp3 =
Zp.)

(4) We set Xp = Xinj: the trigger type is
the first prereactant.

All the absence indicators aqi are pro-
duced continuously at the slow rate:

∅ slow−−→ aqi; (5)

Here the symbol ∅ as a reactant indicates
that the reaction does not alter the quantity
of the reactant types, perhaps because the
quantity of these is large or replenishable.
If Qi is present, then its absence indicator
aqi is destroyed at the fast rate:

aqi + Qi
fast−−→ Qi. (6)

However, if Qi is absent, then aqi persists, so its presence indicates the absence of Qi, as required. If
both a prereactant Qpi and the absence indicator aqi for the i-th bit are present, we produce type Qi



at the fast rate:

aqi + Qpi
fast−−→ Qi + aqi. (7)

Finally, the prereactant Qp(i+1) for the (i+1)-st bit is produced at the fast rate if both the prereactant
Qpi and the type Qi for the i-th bit are present:

Qi + Qpi
fast−−→ Qp(i+1). (8)

Table 1 lists the corresponding reactions for our three-bit counter in terms of the bit types X, Y and
Z instead of generic Qi’s. Figure 4 shows a modified version of the flowchart in Figure 3, this time
with prereactants and absence indicators.

Table 1. Reactions for the molecular counter, with prereactants and absence indicators.

# Qi Z Y X

1 ∅ slow−−→ aqi ∅ slow−−→ az ∅ slow−−→ ay ∅ slow−−→ ax

aqi + Qi
fast−−→ Qi az + Z

fast−−→ Z ay + Y
fast−−→ Y ax + X

fast−−→ X

2 aqi + Qpi
fast−−→ Qi + aqi az + Zp

fast−−→ Z + az ay + Yp
fast−−→ Y + ay ax + Xp

fast−−→ X + ax

3 Qi + Qpi
fast−−→ Qp(i+1) Z + Zp

fast−−→ ∅ Y + Yp
fast−−→ Zp X + Xp

fast−−→ Yp

3.2. Three-Phase Synchronization

Including absence indicators and prereactants establishes an order for the transfers of molecular
quantities in the counter, but we need a mechanism to ensure that each transfer completes before the
next one begins. As indicated on the left-hand side of Figure 5, we must ensure that the accumulation
or destruction of the absence indicator completes before the production of the bit type begins; in
turn, we must ensure that the production of the bit type completes before the production of the next
prereactant begins, and so on. Similarly, as indicated on the right-hand side of Figure 5, we must
ensure that the bit types X, Y and Z are not produced simultaneously. We must turn the two “dials”
shown in Figure 5 simultaneously. To do so, we introduced a synchronization mechanism based on
sustained chemical oscillation.

Chemical oscillations, such as those produced by Belousov–Zhabotinsky (BZ) system, have been
widely studied by the chemical engineering community.9 For our purposes, we require an oscillator
with a specific property: it must have three symmetric phases for synchronizing both of the “dials”
in Figure 5. To this end, we have developed a scheme for chemical oscillation that we call “Red-
Green-Blue” (RGB). A detailed analysis of the scheme is given in related work.7 Here we give only
a cursory description of it.

Like the BZ system, our scheme is a perfect oscillator, producing sustained oscillations for a wide
range of reaction rates. The scheme is illustrated in Figure 6. Reactions are “color coded” – that is to
say assigned to one of the three categories. Quantities are transferred between color categories based
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on the absence of types in the third category: red goes to green in the absence of blue; green goes
to blue in the absence of red; and blue goes to red in the absence of green. We introduce molecular
types R, G and B. Computation cycles are implemented by transferring quantities among three types
R, G and B, with following reactions:

b + R
slow−→ G + b (9) r + G

slow−→ B + r (10) g + B
slow−→ R + g (11)

We generate “absence indicators” types r, g and b corresponding to R, G and B:

∅ slow−→ r
R + r fast−→ R

(12)
∅ slow−→ g

G + g fast−→ G
(13)

∅ slow−→ b
B + b fast−→ B

(14)

The absence indicators are continually generated. However, they only persist in the absence of the
corresponding color-coded signals, since they are quickly consumed by signal molecules in their
corresponding color categories. This feature assures that as long as any reaction in a given phase has
not fired to completion, the succeeding phase cannot begin. We also include reactions that accelerate
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Fig. 8. Simulation results for RGB oscillation.

and isolate the transfers in each phase. For instance, in Reaction 15 two molecules of G combine
with one molecule of R to produce three molecules of G. The transfer will occur at a higher rate.
Simulation results illustrating the RGB oscillation are shown in Figure 8. In the next section, we
incorporate this scheme to synchronize the molecular counter, using RGB in a way analogous to a
clock signal in digital electronics.

R + 2G
slow−→ 3G (15) G + 2B

slow−→ 3B (16) B + 2R
slow−→ 3R (17)



3.3. The Molecular Binary Counter with RGB scheme

Figure 7 shows the assignment operations to phases of the computation. Absence indicators r, g
and b are used to initiate reactions in each phase. In lieu of the generic transfer reactions 9– 11, we
use transfer reactions that produce the absence indicators ax, ay and az for X, Y and Z, respectively:

r + G
slow−−→ B + ax + r (18) g + B

slow−−→ R + ay + g (19) b + R
slow−−→ G + az + b (20)

This obviates the need for reactions of the form of Reaction 5 to generate ax, ay and az.
A set of reactions for the counter that incorporates the RGB transfer reactions is described in

Figure 9. This is nearly the final design. However, we need a few more reactions to deal with ac-
cumulation of unused absence indicators. The transfer reactions 18–20 supply absence indicators
ax, ay and az in every RGB cycle. The scheme cycles continuously, irrespective of injections of Xinj.
Accordingly, unused absence indicators ax, ay and az will accumulate. To mitigate against this, we
include “clean-up” reactions initiated in the presence of corresponding absence indicators r, g and b:

b + ax
fast−−→ b (21) r + ay

fast−−→ r (22) g + az
fast−−→ g (23)

As shown in Figure 9 the corresponding clean-up reactions always complete before the produc-
tion of ax, ay and az begins. For instance, the absence indicator az is pushed into the system by
Reaction 20 whenever the absence indicator b is present. Therefore, the clean-up Reaction 23 for az

fires in the preceding RGB phase that was initiated in the presence of absence indicator g.
Table 2 shows the final set of RGB reactions and Table 3 shows the final set of reactions for X,

Y and Z. Together, these comprise our complete design of the molecular counter.

Table 2. Final version of RGB reactions for the molecular counter.

Production of r, g, b Destruction of r, g, b Transfer reactions Speed-up reactions Clean-up reactions

∅ slow−−→ r R + r fast−−→ R b + R
slow−−→ G + az + b R + 2G

slow−−→ 3G b + ax
fast−−→ b

∅ slow−−→ g G + g fast−−→ G r + G
slow−−→ B + ax + r G + 2B

slow−−→ 3B r + ay
fast−−→ r

∅ slow−−→ b B + b fast−−→ B g + B
slow−−→ R + ay + g B + 2R

slow−−→ 3R g + az
fast−−→ g

Table 3. Final version of reactions for molecular types X , Y and Z.

Accumulation or destruction of absence indicators Production of molecules Production of prereactant

r + ax + X
fast−−→ X + r g + ax + Xp

fast−−→ X + ax + g b + X + Xp
fast−−→ Yp + b

g + ay + Y
fast−−→ Y + g b + ay + Yp

fast−−→ Y + ay + b r + Y + Yp
fast−−→ Zp + r

b + az + Z
fast−−→ Z + b r + az + Zp

fast−−→ Z + az + r g + Z + Zp
fast−−→ g



RGB cycles all the time pushing ax, ay, and az into the system.

Clean-up reactions:

Speed-up reactions:

Counting initiated by Xinj operates synchronously with RGB cycle
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Fig. 9. Diagram for the molecular counter with RGB synchronization.

4. Simulation results

As we discuss in Section 5, we are targeting DNA strand displacement as a potential experimen-
tal chassis for our molecular counter.8 Accordingly, the constituent chemical reactions must all be
either uni- or bimolecular reactions. Thus, we split all trimoleclar reactions of the form

R1 + R2 + R3
k1−→ R4 + · · · (24)

in Table 2 and Table 3 into the sequence of bimolecular reactions

R1 + R2

k1−⇀↽−
k2

I

I + R3
k2−→ R4 + · · · .

(25)

The first step in this process is reversible: two molecules R1 and R2 can combine at a rate k1, but in
the absence of any molecules R3, the combined form will dissociate back into molecules R1 and R2

at a rate k2 which is greater than k1. In the presence of R3, the sequence of reactions will proceed,
producing R4 + · · · . The overall rate of reactions is determined by the slowest reaction and therefore
set by k1.

With such transformations into uni- and bimolecular reactions, we simulate the chemical kinetics
of our molecular counter with an ordinary differential equation (ODE) solver. We chose the param-
eters, the concentration values and reaction rates as follows. The concentrations are unitless; for an
experimental setup, these would be scaled appropriately. The initial concentration of our trigger type
Xp was set to 0.05. (Recall that we use Xp as the trigger type, so Xinj = Xp.) The initial concentration



of G was set to a value much greater than that of Xp, namely 10. The rates of all the “slow” reactions
were set to unity. The rates of all the “fast” reactions were set five orders of magnitude higher.

Figure 10 shows the change in concentration X, Y and Z for 20 injections. We observed a stable
behavior of the molecular binary counter for 40 injections. The data from the simulation for the first
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Fig. 10. Simulation results for molecular types X , Y and Z for 20 injections.

8 injections is shown in Table 4. We see exactly the behavior that we expect for a binary counter.

• The threshold for logical “1” for the bit types X, Y and Z can be set at 97% of the injected
concentration of Xp.

• The threshold for logical “0” for the bit types X, Y and Z can be set at 3% of the injected
concentration of Xp.

Table 4. Data from the ODE simulation of the molecular counter for 8 successive incre-
ment operations.

# Injection Binary number Concentration Z Concentration Y Concentration X

0 000 0.0000 0.0000 0.0000
1 001 0.0000 0.0000 0.0499
2 010 0.0000 0.0500 0.0001
3 011 0.0000 0.0500 0.0501
4 100 0.0497 0.0003 0.0007
5 101 0.0497 0.0003 0.0507
6 110 0.0497 0.0503 0.0007
7 111 0.0490 0.0496 0.0493
8 000 0.0002 0.0004 0.0007



5. Discussion

We have demonstrated the design of a molecular counter that is robust and accurate. Given only
rate categories of “slow” and “fast, our counter computes exact binary values. It does not matter how
fast any “fast” reaction is relative to another, or how slow any “slow” reaction is relative to another –
only that “fast” reactions are fast relative to “slow” reactions. Throughout the paper, the exposition
was in terms of a three-bit counter. In future work, we will generalize the construction to n bits.

Our contribution is to tackle the problem of synthesizing computation at a conceptual level,
working not with actual molecular types but rather with abstract types. In future work, we will
demonstrate our binary counter through in vitro experiments with DNA. It has been shown that DNA
strand displacement reactions can emulate the chemical kinetics of nearly any chemical reaction
network. Indeed, in recent work, researchers at Caltech have developed a compiler that translates
abstract chemical reactions of the sort that we design into specific DNA reactions.8

Recent work has demonstrated both the scale of computation that is possible with DNA-based
computing,10 as well as exciting applications.11 We comment that our design of a molecular counter
could be applied for the task of counting cell divisions. This task is important for the analysis of
aging and, perhaps, for the detection of cancer, where cell divisions run rampant. Also, our design
might find applications in biochemical sensing and drug delivery.
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