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Abstract

Emerging technologies for nanoscale computation such as self-assembled nanowire arrays

present specific challenges for logic synthesis. On the one hand, they provide an

unprecedented density of bits with a high degree of parallelism. On the other hand, they

are characterized by high defect rates. Also they often exhibit inherent randomness in the

interconnects due to the stochastic nature of self-assembly. We describe a general method

for synthesizing logic that exploits both the parallelism and the random effects. Our

approach is based on stochastic computation with parallel bit streams. Circuits are

synthesized through functional decomposition with symbolic data structures called

multiplicative binary moment diagrams. Synthesis produces designs with randomized

parallel components – AND operations and multiplexing – that are readily implemented in

nanowire crossbar arrays. Synthesis results for benchmarks circuits show that our

technique maps circuit designs onto nanowire arrays effectively.

keywords: nanowire crossbar array, stochastic circuit, multiplicative binary moment

diagram
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The Synthesis of Stochastic Circuits for Nanoscale

Computation

Introduction

As the semiconductor industry contemplates the end of Moore’s Law, there has been

considerable interest in novel materials and devices (International Technology Roadmap

for Semiconductors, 2006). Technologies such as molecular switches and carbon nanowire

arrays offer a path to scaling beyond the limits of conventional CMOS (FENA, 2006).

Most such technologies are in the exploratory phases, still years or decades from the point

when they will be actualized. Accordingly, the development of software tools and

techniques for logic synthesis remains speculative.

And yet, for some types of new technologies, we can identify broad traits that will

likely impinge upon synthesis. For instance, nanowire arrays are stochastically

self-assembled in tightly-pitched bundles. Accordingly, they exhibit the following (DeHon,

2005):

1. A high degree of parallelism.

2. Minimal control during assembly.

3. Inherent randomness in the interconnect schemes.

4. High defect rates.

Existing strategies for synthesizing logic for nanowire arrays are based on routing

schemes similar to those used for field-programmable gate arrays (FGPAs) (DeHon, 2005).

These rely on probing the circuit and programming interconnects after fabrication.

We describe a general method for synthesizing logic that exploits both the

parallelism and the random effects of the self-assembly, obviating the need for such

post-fabrication configuration. Our approach is based on stochastic computation with
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parallel bit streams. Circuits are synthesized through functional decomposition with

symbolic data structures called multiplicative binary moment diagrams. Synthesis

produces designs with randomized parallel components – AND operations and

multiplexing – operating on the stochastic bit streams. These components are readily

implemented in nanowire crossbar arrays. We present synthesis results for benchmarks

circuits illustrating the method. The results show that our technique is effective in

implementing designs with nanowire arrays, with a measured tradeoff between the degree

of redundancy and the accuracy of the computation.

Figure 1. N ×N nanowire crossbar with random connections.

Circuit Model

Our discussion of synthesis is framed in terms of a conceptual model for nanowire

arrays. (In the later part of the paper, we justify this model with implementation details.)

A nanowire crossbar is illustrated in Figure 1. The connections between horizontal and

vertical wires are random. However, we assume that these connections are nearly

one-to-one, that is to say, nearly every horizontal wire connects to exactly one vertical

wire, and vice-versa. This is a specific attribute of types of nanowire arrays, controlled

during self-assembly (DeHon, 2005).

Parallel Stochastic Bit Streams

Our synthesis method implements digital computation in the form of parallel

stochastic bit streams. We refer to a collection of parallel nanowires as a bundle. The

width of a bundle is the number wires. Its current weight is the number of logical 1’s on

its wires. The signal that it carries is a real value between zero and one corresponding to

the fractional weight: for a bundle of N wires, if k of the wires are 1, then the signal is

k/N . Let P (X = 1) denote the probability that any given wire in bundle X carries a 1.
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Shuffling Devices

We implements computation with two basic nanowire constructs: shuffled ANDs

and Bundleplexers. We describe these only in conceptual terms here; implementation

details are postponed until the later part of the paper.

Shuffled AND. A shuffled AND has two bundles of N wires as inputs and a bundle

of N wires as the output. Each wire in the output bundle is actually the output of an

AND gate, which takes one input from the first input bundle and the other from the

second. The choice of which inputs are fed into which AND gate is random. Figure 2

shows a simple shuffled AND with N = 3.

Figure 2. A shuffled AND element, for bundles of width 3.

Suppose that the signal carried by the first input bundle A is a, that carried by the

second input bundle B is b, and that carried by the output bundle C is c. Provided that

the bits in the first and second input bundles are independent, for large N we can assume

that

c = P (C = 1) (1)

= P (A = 1 and B = 1) (2)

= P (A = 1) · P (B = 1) (3)

= a · b. (4)

We see that a shuffled AND in effect performs the multiplication of the signals carried by

the two input bundles.

Bundleplexer. A bundleplexer has two bundles of N wires as its inputs and a bundle

of N wires as its output. It is tagged with a fixed selecting ratio, 0 < s < 1 . The

output bundle is composed of a randomly selected choice of sN bits from the first input

bundle and (1− s)N bits from the second. The choice is not ordered: rather, a random
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shuffling occurs. Figure 3 shows a bundleplexer with N = 4 and s = 3/4. The output

bundle has three wires from input bundle A and one wire from input bundle B.

Figure 3. A bundleplexer with N = 4 and s = 3/4.

Suppose that the signal carried by the first input bundle A is a, that carried by the

second input bundle B is b and that carried by the output bundle C is c. For large N , we

can assume that

c = P (C = 1) (5)

= sP (A = 1) + (1− s)P (B = 1) (6)

= sa+ (1− s)b. (7)

We see that a bundleplexer in effect performs a scaled addition on the signals carried by

the two input bundles.

Stochastic Circuits

Our synthesis method produces a circuit design that operates on the

fractional-weighted values carried by bundles of wires. Our approach is analogous to the

formulation of a real-valued polynomial representation of a circuit, with arithmetic

multiplication and addition. (In fact, we perform synthesis with symbolic data structures

called binary moment diagrams.)

For example, consider a circuit with the Boolean truth table shown in the top-right

in Figure 4. Its output y can be represented as

y = a+ b− 2ab.

Evaluating this polynomial for all Boolean values of a and b gives the correct Boolean

output y. We use shuffled ANDs for multiplication and bundleplexing for addition.

Figure 4. An example of the formulation of a stochastic circuit.
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For a circuit with m inputs and n outputs, we have m input bundles and n output

bundles (each bundle consisting of N parallel wires). For computation, all the wires in

each input bundle are set to the corresponding Boolean input value (so all the wires in

each bundle are set to 0 or to 1). With bundleplexing, wires are randomly selected from

separate bundles. As a result, the internal bundles carry stochastic bit streams with

fractional weightings.

We assume that the output of the circuit is directly usable in a fractional-weighted

form. For instance, in sensor applications, an analog voltage discriminating circuit might

be used to transform an output bundle of bits into a Boolean value. We assume direct

quantization: an output signal greater than or equal to 0.5 corresponds to logical 1; less

than this corresponds to 0.

Figure 4 illustrates the formulation. Bundles of width N = 4 are used. The truth

table shown in the bottom-right gives the fractional weight on the output bundle Y . For

inputs A = 1 and B = 0, we have Y = 3/4, which corresponds to logical 1. For A = 1 and

B = 1, we have Y = 1/4, which corresponds to logical 0. Thus, the stochastic circuit

implements the same Boolean function as that shown in the top-right truth table.

Synthesis of Stochastic Circuits

Our synthesis procedure begins with the specification of a combinational circuit, say

in the form of a netlist, and produces a stochastic design consisting of shuffled AND

elements and bundleplexer elements. Synthesis is performed through functional

decomposition with a variant of binary decision diagrams called multiplicative binary

moment diagrams (*BMDs) (Bryant & Chen, 1995).

Multiplicative Binary Moment Diagrams

Like binary decision diagrams, *BMDs are a graphic representation of functions over

Boolean variables; however, they can have non-Boolean ranges. Figure 6 shows an
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example of a *BMD for the circuit in Figure 5, implementing the function:

y = ((x1 ∧ x2) ∧ (x3 ∨ x4)) ∨ (x3 ∧ x4).

Figure 5. A simple circuit.

There is a total ordering of the variables in a *BMD. Also, each non-terminal vertex

has outgoing edges to two children. Three salient features of *BMDs are:

1. There can be more than two terminal vertices and each terminal vertex can have

a number other than 0 or 1. (Terminal vertices are shown as square boxes at the leaves of

the tree.)

2. Each edge has an associated weight which can either be an integer or a real value.

(The weights are shown in square boxes written directly on the edges; an edge without a

box is assumed to have weight 1; the weights of edges that connect to terminal vertices are

simply the weights of the terminal vertices themselves.) Note that the edge pointing to

the root can also have a weight. (For example, see Figure 7(b).) The function represented

by a *BMD is the product of the root weight and the function at the root vertex.

Figure 6. The *BMD for the circuit in Figure 5.

3. The left edge from each vertex indicates the case where the function is

independent of the vertex variable; the right edge indicates the case where the function

depends linearly on that variable. (In diagrams, we sometimes exchange “left” and “right”

to get prettier graphs; when we do so, we indicate this by annotating the edges with L

and R.) Thus, the function f at a vertex with variable x is

f = wLfL + wRfRx, (8)

where wL is the weight of the left edge and wR is the weight of the right edge; fL is the

function at the vertex pointed to by the left edge and fR is the function at the vertex

pointed to by the right edge. We obtain the function for the *BMD through such recursive

decomposition.
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In order to construct a *BMD, we begin with base functions corresponding to

constants and individual variables, and then we build more complex functions by

combining these. Given a circuit, we obtain a *BMD for its Boolean function by

expressing it in terms of addition and multiplication operations. For the *BMD in

Figure 6, the function is

f = x1x2x3 + x1x2x4 + x3x4 − 2x1x2x3x4. (9)

In general, for a circuit with multiple outputs, there are separate *BMDs for each output.

However, in the data structure, significant portions of different *BMDs can often be

shared (Bryant & Chen, 1995).

Decomposing a *BMD into Positive and Negative *BMDs

After obtaining a *BMD for a circuit, the next step in our procedure is to

decompose it into two *BMDs, both with non-negative-weighted edges, such that the

function of the original *BMD equals that of the first *BMD minus that of the second.

We call the first *BMD the positive *BMD and the second the negative *BMD.

Figure 7 shows the positive and negative *BMDs for the *BMD in Figure 6. The

function of the positive *BMD is x1x2x3 + x1x2x4 + x3x4 and the function of the negative

*BMD is 2x1x2x3x4. The procedure for this decomposition is given as pseudo-code in

Figure 8.

Figure 7. The positive and negative *BMDs for the *BMD in Figure 6.

(a) Positive *BMD; (b) Negative *BMD.

In the pseudo-code, we represent a *BMD as a weighted pair of the form (w, v),

where v designates the root vertex and w is the root edge weight. (This pair also refers to

the function represented by the *BMD.) A vertex v = Λ denotes a terminal leaf. The

function Var(v) returns the variable of vertex v. The function Left(v) returns the left

pair of v: (wL, vL), where wL is the weight of the left edge of v and vL is the left child of
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v. Similarly, the function Right(v) returns the right pair of v: (wR, vR), where wR is the

weight of the right edge of v and vR is the right child of v.

The function MakeBranch(x, (wL, vL), (wR, vR)) constructs a new *BMD. It returns

a pair (w, v) designating a *BMD, such that wf(v) = wLf(vL) + wRf(vR)x. Here, f(v)

denotes the function of vertex v. The function ApplyWeight(w′, (w, v)) multiplies the

function of the pair (w, v) by a constant w′ and returns the resulting pair. The functions

MakeBranch and ApplyWeight are described in (Bryant & Chen, 1995).

The function PosNegBMD in Figure 8 takes a pair (w, v) representing a *BMD as

an input argument and returns two pairs (wP , vP ) and (wN , vN ) representing the positive

and negative *BMDs, respectively. It first obtains the positive and negative *BMDs

without considering the weight w. In the non-trivial case, i.e., when v is not a terminal

vertex, it recursively calls PosNegBMD to obtain the positive and negative *BMDs of the

*BMDs designated by the left and right pairs of v. Then, the procedure calls the function

MakeBranch to construct a positive *BMD based on the two positive *BMDs of the left

and right pairs of v. Similarly, it constructs a negative *BMD based on the two negative

*BMDs of the left and right pairs of v. Finally, it calls the function WeightChange to

apply the weight w to the previously obtained positive and negative *BMDs. If w ≥ 0,

then WeightChange just calls the function ApplyWeight to multiply both the positive and

negative *BMDs by the weight w. Otherwise, the positive *BMD is taken to be the

previously obtained negative *BMD multiplied by −w; the negative *BMD is taken to be

the previously obtained positive *BMD multiplied by −w.

Figure 8. Procedure for decomposing a *BMD into positive and negative

*BMDs.
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Transforming a *BMD into a Unit-Weight *BMD

In order to build a stochastic circuit, we need to transform *BMDs with integer edge

weights into *BMDs of a special form, which we call unit-weight: a *BMD is unit-weight

if the absolute values of the edge weights of each non-terminal vertex sum to 1.

Figure 9 gives the unit-weight *BMD corresponding to the positive *BMD in

Figure 7(a). The unit-weight *BMD corresponding to the negative *BMD in Figure 7(b)

is just itself. The procedure for this transformation is given as pseudo-code in Figure 10.

Figure 9. The unit-weight *BMD corresponding to the *BMD in

Figure 7(a). The numbers in parentheses gives the FuncWeight of the

corresponding vertices.

Assume that the original *BMD has variables x1, x2, · · · , xn and that they are

ordered as xn < xn−1 < · · · < x1. (Here the root vertex has variable xn.) Each vertex in

the unit-weight *BMD has three data members recording the weights:

1. LeftWeight: The edge weight of its left branch.

2. RightWeight: The edge weight of its right branch.

3. FuncWeight: The weight used to keep the function at that vertex unchanged.

The function at a vertex in the unit-weight *BMD multiplied by its FuncWeight equals

the function at the corresponding vertex in the original *BMD.

Figure 10. Procedure for transforming a *BMD into a unit-weight

*BMD.

In Figure 9, we show the FuncWeight of each vertex in parentheses. For example,

the FuncWeight for vertex m4 equals 2 and the function for m4 is f ′4 = 1
2x1x2 + 1

2x3. The

function for the corresponding vertex n4 in Figure 7(a) is f4 = x1x2 + x3 = 2f ′4.

In the initialization, we set the FuncWeight for each terminal vertex to the weight of

that vertex. Then the procedure modifies the edge weights for all the vertices with

variable x1; then for all the vertices with x2; and so on through to xn. For each vertex v
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in the unit-weight *BMD, let its LeftWeight and the LeftWeight of the corresponding

vertex in the original *BMD be wUL and wOL, respectively. Let its RightWeight and the

RightWeight of the corresponding vertex in the original *BMD be wUR and wOR,

respectively. Let its FuncWeight be wUF .

Denote the FuncWeight of its left child and its right child as wFL and wFR,

respectively. We have the following equations to determine wUL, wUR and wUF :

wUF = |wFL · wOL|+ |wFR · wOR|,

wUL =
wFL · wOL

wUF
,

wUR =
wFR · wOR

wUF
.

Finally, we set the root edge weight wU of the unit-weight *BMD to

wU = wO · wF (root),

where wO is the root edge weight for the original *BMD and wF (root) is the FuncWeight

for the root vertex.

If the original *BMD has integer edge weights, then the edge weights of the

unit-weight *BMD built by the procedure MakeUnitWeightBMD are all rational numbers.

The root edge weight wU is an integer.

Transforming a Unit-Weight *BMD into a Stochastic Circuit

In our method, we transform both the positive and negative *BMDs into

unit-weight *BMDs. (We refer to these as UnitPosBMD and UnitNegBMD,

respectively.) Both of these have non-negative edge weights.

Given a unit-weight *BMD with non-negative edge weights, we can transform it

directly into a stochastic circuit. For each vertex in the *BMD, we build a stochastic

circuit with an output bundle that implements the function at that vertex. (Here, when
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we say “a bundle implements a function”, we mean that the signal carried by the bundle

equals the function output for all input combinations.)

The procedure is as follows. We first set n bundles of inputs such that their signals

are equal to the Boolean inputs x1, x2, · · · , xn of the original circuit. Also, we provide an

input bundle with all bits equal to 1 (equivalent to a constant logical value of 1).

Next, we build bundles implementing the functions of vertices in the unit-weight

*BMD with variable x1; then bundles implementing the functions of vertices with variable

x2; and so on through to those vertices with variable xn.

For the circuit corresponding to a non-terminal vertex vk with variable xi, suppose

that the functions of its left child vertex and right child vertex are fL and fR, respectively,

and that LeftWeight and RightWeight are wL and wR, respectively. We have 0 ≤ wL ≤ 1,

0 ≤ wR ≤ 1 and wL + wR = 1. According to Equation (8), the function of vk is

f(vk) = wLfL + wRfRxi. (10)

At this point, since we are building the circuit according to the order of the vertex

indices, we have already constructed a bundle sL implementing fL and a bundle sR

implementing fR. To build the bundle implementing f(vk), we first build a shuffled AND

on the input bundles sR and xi. Call the result of the shuffled AND sC and its signal fC .

Since P (xi = 1) = 0 or 1, we have

P (fR = a, xi = b) = P (fR = a) · P (xi = b),∀a, b ∈ {0, 1},

which means that the bits in the bundle sR and the primary input bundle for xi are

independent. Thus, according to Equation (4), we have

fC = fRxi.

If wL 6= 0, then we build a bundleplexer with inputs sL and sC . We set the selecting

ratio of this bundleplexer to be s = wL with respect to sL. Thus, according to
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Equation (7), the output bundle of the bundleplexer implements the function

wLfL + (1− wL)fC = wLfL + wRfRxi,

and so implements the function of vertex vk.

A circuit fragment illustrating these steps is shown in Figure 11. In the circuit, we

use a gate called “SAND” to denote a shuffled AND operation and a gate called “BUX”

to denote bundleplexing. (We denote bundles by crossing a single wire with a slash and

writing the number of wires, N , next to it.) The number on a bundleplexer denotes its

selecting ratio with respect to the input bundle that is bubbled. The same conventions are

also used in Figure 12.

If wL = 0, then wR = 1 and Equation (10) simplifies to f(vk) = fRxi. Thus, the

output bundle sC of the shuffled AND implements the function of the vertex vk.

Figure 11. A circuit fragment illustrating the computation of the

function of a vertex vk.

Since both UnitPosBMD and UnitNegBMD are unit-weight *BMDs with

non-negative edge weights, we can build two stochastic circuits implementing the

functions of the root vertices of these *BMDs.

Finally, we connect the output bundles of the two circuits to an analog counter. The

1’s in the output bundle of the circuit for UnitPosBMD will increment the counter by

wUP , while the 1’s in the output bundle of the circuit for UnitNegBMD will decrement it

by wUN , where wUP and wUN are the root edge weights of UnitPosBMD and

UnitNegBMD, respectively. We call the increment and decrement coefficients of the

counter the scaling factors.

For the UnitPosBMD shown in Figure 9 and the UnitNegBMD shown in

Figure 7(b), we obtain the stochastic circuit shown in Figure 12. The output bundle of

BUX1 implements the function of vertex m4 and the output bundle of BUX2 implements
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the function of vertex m5, the root vertex of UnitPosBMD. The output bundle of SAND3

implements the function of the root vertex of UnitNegBMD. Finally, we connect the

output bundle of BUX2 and the output bundle of SAND3 to a counter. The output of the

counter implements the function of the original *BMD in Figure 6. Thus, the circuit

implements the same logic as the circuit in Figure 5.

Figure 12. The stochastic circuit obtained from the UnitPosBMD in

Figure 9 and the UnitNegBMD in Figure 7(b). The number on the counter

indicates the amount that it increments or decrements the count for each 1 on

the corresponding bundle. The output of the counter implements the function

of the original *BMD in Figure 6.

Summary of Synthesis Procedure

In summary, our procedure for synthesizing a stochastic circuit consists of the

following five steps:

1. Build a *BMD for each output of the circuit.

2. Decompose each *BMD into positive and negative *BMDs.

3. Transform these into unit-weight *BMDs.

4. Transform the unit-weight *BMDs into stochastic designs with shuffled ANDs

and bundleplexers.

5. Realize the outputs with cumulative increment and decrement operations on the

outputs.

Experimental Results

We chose 15 small benchmark circuits from the IWLS ’93 set to test our synthesis

technique. (For sequential circuits in this group, we have extracted the combinational

part.) Table 1 shows some statistics of the original benchmark circuits and the

corresponding stochastic circuits. Column “#Devices in Orig. Ckt.” gives the number of
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devices in the original circuit and column “#Devices in Stoch. Ckt.” gives the number of

devices in the stochastic circuit. Here the devices are the shuffled AND elements and

bundleplexers used in the design. The column “Ratio” gives the ratio of the number of

devices in the stochastic circuit to the number of devices in the original circuit. We see

that that this ratio is on average one and a half.

Table 1. Synthesis results for selected IWLS ’93 benchmark circuits.

Given that the width of the bundles is finite, the outputs of the stochastic circuit

might be erroneous. We analyze the error ratio defined as the number of outputs that

return an incorrect value. For example, assume that for a given combination of inputs, the

outputs of the stochastic circuit are ~os = (o1, o2, o3, o4) = (0.78, 1.01,−0.02, 0.16) and that

the correct values are ~o = (1, 1, 1, 0). After discriminating, we get a Boolean output

~os
′ = (1, 1, 0, 0). Comparing ~os

′ with ~o, we find that 1 out of 4 bits is incorrect, so the

error ratio is 25%. Of course, with larger bundle widths the error ratio will be lower.

In our experiments, we do an average across a number of input combinations with

the following rule: if the number of inputs is less than or equal to 5, then we run through

all the input combinations; otherwise, we randomly select 25 = 32 input combinations and

run experiments on them. Considering the inherent randomness in the circuit

construction, we also run 20 trials for each input combination and average the results. (In

our simulations, the randomness of the construction is generated by the standard C

function rand().) We find that the width of the bundles needed to obtain an error ratio

below a given threshold is linearly proportional to the maximal scaling factor of all the

counters.

Define α as the ratio of the width of the bundles to the maximal scaling factor. We

run experiments to see how the error ratio changes with increasing α. We set α to five

different values: 5, 10, 20, 50, 100. The result for each circuit is shown in Table 2. The

error ratio is shown in the form of percentages. The smaller the error ratio, the better the
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result. We also give the maximal scaling factor for each circuit. The width of the bundles

in each circuit is the maximal scaling factor multiplied by α.

Table 2. Error percentages vs. α, the ratio of the width of the bundles to

the maximal scaling factor.

From Table 2, we see that:

1. With α increasing, the error ratio decreases.

2. For all the circuits, the error ratio is below 4% when α = 10.

3. For most of the circuits, the error ratio is below 1% when α = 20.

4. When α = 100, the error ratio is almost 0.

Some applications are characterized by a tolerance for less than perfectly accurate

computation. For example, in image processing applications, a small error in a processed

image will be masked by the limits of the display device and by the limits of human

vision (Asgar, Kodakara, & Lilja, 2005). For such applications, a non-zero error ratio is

acceptable. Suppose that we choose 1% as our error ratio threshold. Then we obtain

α ≈ 20. Given that the maximal scaling factor is around 10, on average, the width of the

bundles in the stochastic circuit will be roughly 200.

Implementation of Stochastic Elements with Nanowire

Crossbar Arrays

General features of nanowire technology are illustrated in Figure 13. The

connections between horizontal and vertical wires are FET-like junctions with nearly a

one-to-one ratio, i.e., there is nearly always one FET-like junction per horizontal

nanowire. This is a specific attribute of nanowire arrays, controlled through doping during

self-assembly (DeHon, 2005).

When high or low voltages are applied to input nanowires, the FET-like junctions

that cross these develop a high or low impedance, respectively. Because the doping regions
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for the junctions are randomly placed across the crossbar, the connections are random.

We exploit this randomness to implement the shuffled AND and bundleplexing constructs.

Figure 13. The nanowire crossbar architecture.

Shuffled AND

In order to implement a shuffled AND on two input bundles, four crossbars are

required. Two invert the signals on the input bundles. Two more invert the results and

compute the AND of pairs of randomly shuffled signals from each bundle.

This is illustrated in Figure 14. Consider the third wire from the bottom. It

produces the AND of a0 and b1. To see this, note that the horizontal wire with input a0

runs through a FET-like junction that inverts the value on the first vertical nanowire from

the left. Similarly the input b1 gets inverted on the second vertical nanowire from the

right. These vertical nanowires are tied together by FET-like junctions on the horizontal

nanowire that produces the output. This effectively computes the complement of the OR

of the inverted values, so the AND of a0 and b1.

Figure 14. The nanowire crossbar architecture implementing a shuffled

AND.

Bundleplexing

In order to implement the bundleplexing operation on two input bundles, we set a

different density of doping for the FET-like regions on the corresponding crossbars. The

density dictates that a certain ratio of the output stream is affected by one input stream

and the rest affected by the other input stream. The implementation is composed of three

crossbars. Two select wires from the input bundles and invert the values. A third inverts

the values a second time, producing the output.

This is illustrated in Figure 15, which shows a bundleplexer with a selecting ratio of

3
4 . We dope the first three vertical wires in the upper-most crossbar and the right-most
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vertical wire in the middle crossbar. This effectively chooses three bits from bundle A and

one bit from bundle B and inverts these. The lower-most crossbar inverts these choices a

second time. This gives the requisite output values: a randomly shuffled selection of bits

from the two input bundles, with a ratio of 3
4 .

Figure 15. The nanowire crossbar architecture implementing a

bundleplexer.

Discussion & Future Directions

The trials with benchmarks in experimental results section show that our technique

produces circuits with tunable characteristics: with small bundle widths, the circuits

require relatively little area yet compute somewhat inaccurately; with larger bundle

widths, the circuits consume more area yet compute more accurately. With sufficiently

wide bundles, the computation is perfectly accurate (i.e., no errors occur in the outputs).

For many applications, such as control circuitry, perfect accuracy is a requisite. However,

for other applications, such as image processing and telemetry, the tolerance for errors

might be quite high. Stochastic circuits are particularly applicable in these domains.

Although not the focus of this paper, defect and fault-tolerance provide the impetus

for our work. Indeed, with parallel stochastic bit streams, the random shuffles need not be

perfect. There can be errors in the shuffling ANDs and bundleplexing: bits can be flipped

or duplicated. With sufficiently wide streams, quantization at the output will map the

resulting fractional weights to the correct Boolean values. We are working to analyze and

optimize fault and defect tolerance with stochastic implementations.

Also, in future work, we will tailor the synthesis of stochastic circuits to particular

forms of nanowire technology, such as hybrid Nano/CMOS architectures (Strukov &

Likharev, 2005 ; Snider & Williams, 2007).
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#Devices #Devices Ratio

Circuit #Inputs #Outputs in Orig. in Stoch. (col. 5 /

Ckt. Ckt. col. 4)

C17 5 2 14 26 1.86

b1 3 4 18 18 1.00

majority 5 1 18 23 1.28

lion 4 3 19 30 1.58

daio 5 4 26 29 1.12

mc 5 7 36 47 1.31

cm138a 6 8 43 104 2.42

bbtas 5 5 44 74 1.68

cm42a 4 10 49 61 1.24

tcon 17 16 58 73 1.26

beecount 6 7 62 108 1.74

decod 5 16 69 194 2.81

sqrt8ml 8 4 74 87 1.18

sqrt8 8 4 79 87 1.10

c8 28 18 184 272 1.48

Average 1.54

Table 1

Synthesis results for selected IWLS ’93 benchmark circuits.
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Max. α: Width of Bundles over

Circuit Scaling Max. Scaling Factor

Factor 5 10 20 50 100

C17 4 8.36 3.13 1.02 0.00 0.00

b1 3 5.63 1.72 0.00 0.16 0.00

majority 9 4.69 1.88 0.94 0.31 0.00

lion 4 4.27 1.56 0.31 0.00 0.00

daio 6 4.53 2.19 0.70 0.04 0.00

mc 6 3.97 2.12 0.42 0.07 0.00

cm138a 8 0.55 0.51 0.22 0.02 0.00

bbtas 7 5.84 1.91 0.78 0.09 0.00

cm42a 4 0.91 0.56 0.03 0.03 0.00

tcon 2 1.50 0.23 0.01 0.00 0.00

beecount 14 4.20 3.35 1.14 0.29 0.05

decod 16 4.81 1.90 0.72 0.11 0.05

sqrt8ml 24 3.56 1.76 0.82 0.39 0.04

sqrt8 24 6.60 1.52 0.86 0.12 0.12

c8 6 5.93 3.09 1.03 0.12 0.01

Average 9.13 4.36 1.83 0.60 0.12 0.02

Table 2

Error percentages vs. α, the ratio of the width of the bundles to the maximal scaling factor.
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Figure Captions

Figure 1. N ×N nanowire crossbar with random connections.

Figure 2. A shuffled AND element, for bundles of width 3.

Figure 3. A bundleplexer with N = 4 and s = 3/4.

Figure 4. An example of the formulation of a stochastic circuit.

Figure 5. A simple circuit.

Figure 6. The *BMD for the circuit in Figure 5.

Figure 7. The positive and negative *BMDs for the *BMD in Figure 6. (a) Positive

*BMD; (b) Negative *BMD.

Figure 8. Procedure for decomposing a *BMD into positive and negative *BMDs.

Figure 9. The unit-weight *BMD corresponding to the *BMD in Figure 7(a). The

numbers in parentheses gives the FuncWeight of the corresponding vertices.

Figure 10. Procedure for transforming a *BMD into a unit-weight *BMD.

Figure 11. A circuit fragment illustrating the computation of the function of a vertex vk.

Figure 12. The stochastic circuit obtained from the UnitPosBMD in Figure 9 and the

UnitNegBMD in Figure 7(b). The number on the counter indicates the amount that it

increments or decrements the count for each 1 on the corresponding bundle. The output

of the counter implements the function of the original *BMD in Figure 6.

Figure 13. The nanowire crossbar architecture.
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Figure 14. The nanowire crossbar architecture implementing a shuffled AND.

Figure 15. The nanowire crossbar architecture implementing a bundleplexer.



Synthesizing Stochastic Circuits, Figure 1

�������

�������



Synthesizing Stochastic Circuits, Figure 2

A

B

{

}C

Shuffled AND

{



Synthesizing Stochastic Circuits, Figure 3

¾ Bundleplexera0

a1

a2

a3

b0

b1

b2

b3

a3

a2

b2

a1

A

B

C



Synthesizing Stochastic Circuits, Figure 4

Original

Circuit

a  b    y

0  0    0

0  1    1

1  0    1

1  1    0

a

b

y

Stochastic

Circuit

A B  Y

0  0  0/4

0  1  4/4   

1  0  3/4

1  1  1/4B

A

Y



Synthesizing Stochastic Circuits, Figure 5

AND1

AND3

OR1 OR2

AND2

x2

y
x3
x4

x1



Synthesizing Stochastic Circuits, Figure 6

x4

x3 x3

x2 x2

x1

0 1

-2

R L



Synthesizing Stochastic Circuits, Figure 7

x4

x3 x3

x2

x1

0 1

n1

n2

n3 n4

n5
x4

x3

x2

x1

0 1

2

(a) (b)



Synthesizing Stochastic Circuits, Figure 8

function PosNegBMD(pair (w, v))

if v = Λ

then (wP , vP )← (1,Λ)

(wN , vN )← (0,Λ)

else (wPL, vPL), (wNL, vNL)← PosNegBMD(Left(v))

(wPR, vPR), (wNR, vNR)← PosNegBMD(Right(v))

(wP , vP )← MakeBranch(Var(v), (wPL, vPL), (wPR, vPR))

(wN , vN )← MakeBranch(Var(v), (wNL, vNL), (wNR, vNR))

end if

(wP , vP ), (wN , vN )← WeightChange(w, (wP , vP ), (wN , vN ))

return (wP , vP ), (wN , vN )

function WeightChange(wtype w, pair (wP , vP ), pair (wN , vN ))

if w ≥ 0

then (wP , vP )← ApplyWeight(w, (wP , vP ))

(wN , vN )← ApplyWeight(w, (wN , vN ))

else (wP , vP )← ApplyWeight(−w, (wN , vN ))

(wN , vN )← ApplyWeight(−w, (wP , vP ))

end if

return (wP , vP ), (wN , vN )
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function MakeUnitWeightBMD(*BMD OriginalBMD)

UnitBMD ← OriginalBMD

for each terminal vertex T of UnitBMD

do T.FuncWeight ← TermWeight(T)

end for

for i← 1 to n

do for each vertex V of UnitBMD with variable xi

do V.LeftWeight ← . . .

V.LeftWeight · V.LeftVertex.FuncWeight

V.RightWeight ← . . .

V.RightWeight · V.RightVertex.FuncWeight

V.FuncWeight ← . . .

abs(V.LeftWeight) + abs (V.RightWeight)

V.LeftWeight ← V.LeftWeight / V.FuncWeight

V.RightWeight ← V.RightWeight / V.FuncWeight

end for

end for

RootEdgeWeight ← root.FuncWeight · RootEdgeWeight

return UnitBMD
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