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ABSTRACT
Mounting concerns over variability, defects and noise motivate a
new approach for integrated circuits: the design of stochastic logic,
that is to say, digital circuitry that operates on probabilistic signals,
and so can cope with errors and uncertainty. Techniques for prob-
abilistic analysis are well established. We advocate a strategy for
synthesis. In this paper, we present a reconfigurable architecture
that implements the computation of arbitrary continuous functions
with stochastic logic. We analyze the sources of error: approxima-
tion, quantization, and random fluctuations. We demonstrate the ef-
fectiveness of our method on a collection of benchmarks for image
processing. Synthesis trials show that our stochastic architecture
requires less area than conventional hardware implementations. It
achieves a large speed up compared to software conventional im-
plementations. Most importantly, it is much more tolerant of soft
errors (bit flips) than these deterministic implementations.

1. INTRODUCTION
The successful design methodology for integrated circuits has

been rigidly hierarchical, with sharp boundaries between different
levels of abstraction. From the logic level up, the precise Boolean
functionality of a circuit is fixed; it is up to the physical layer to
produce voltage values that can be interpreted as the exact logical
values that are called for. This abstraction is firmly entrenched yet
costly: variability, uncertainty, noise – all must be compensated for
through ever more complex design techniques at the physical level.
As the scale of technology pushes into ever deeper regimes, the cost
and complexity are threatening to stall progress. We argue that the
deterministic paradigm is untenable.

1.1 Stochastic Logic
We advocate a novel view for computation: instead of synthe-

sizing circuits that transform definite inputs into definite outputs –
say Boolean, integer, or floating-point values into same – we syn-
thesize circuits that transform probability values into probability
values. Operations at the logic level are performed on randomized
values in serial streams or on parallel “bundles” of wires. When se-
rially streaming, the signals are probabilistic in time, as illustrated
in Figure 1(a); in parallel, they are probabilistic in space, as illus-
trated in Figure 1(b).

The bit streams or wire bundles are digital, carrying zeros and
ones; they are processed by ordinary logic gates, such as AND
and OR. However, the signal is conveyed through the statistical
distribution of the logical values. With physical uncertainty, the
fractional numbers correspond to the probability of occurrence of
logical one versus logical zero. In this way, computations in the
deterministic Boolean domain are transformed into probabilistic
computations in the real domain. In the serial representation, a
real number x in the unit interval (i.e., 0 ≤ x ≤ 1) corresponds
to a bit stream of length N , X(t), t = 1, 2, . . . , N . In the parallel
representation, it corresponds to the bits on a bundle of N wires.
∗This work is supported by a grant from the MICRO Focus Center
Research Program on Functional Engineered Nano-Architectonics.

The probability that each bit in the stream or the bundle is one is
P (X = 1) = x.

Throughout this paper, we illustrate our method with serial bit
streams. However, our approach is equally applicable to paral-
lel wire bundles. Indeed, we have advocated stochastic logic as
a framework for synthesis for technologies such as nanowire cross-
bar arrays [1].
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Figure 1: Stochastic encoding: (a) A stochastic bit stream; (b) A stochas-
tic wire bundle. A real value x in [0, 1] is represented as a bit stream or a
bundle X . For each bit in the bit stream or bundle, the probability that it is
1 is: P (X = 1) = x.

Our synthesis strategy is to cast logic computations as arithmetic
operations in the probabilistic domain and implement these directly
as stochastic operations on data-paths. Two simple arithmetic oper-
ations – multiplication and scaled addition – are illustrated in Fig-
ure 2.

• Multiplication. Consider a two-input AND gate, shown in
Figure 2(a). Suppose that its inputs are two independent bit
streams X1 and X2. Its output is a bit stream Y , where

y = P (Y = 1) = P (X1 = 1 and X2 = 1)

= P (X1 = 1)P (X2 = 1) = x1x2.

Thus, the AND gate computes the product of the two input
probability values.

• Scaled Addition. Consider a two-input multiplexer, shown
in Figure 2(b). Suppose that its inputs are two independent
stochastic bit streams X1 and X2 and its selecting input is a
stochastic bit stream S. Its output is a bit stream Y , where

y = P (Y = 1)

= P (S = 1)P (X1 = 1) + P (S = 0)P (X2 = 1)

= sx1 + (1− s)x2.

(Note that throughout the paper, multiplication and addition
represent arithmetic operations, not Boolean AND and OR.)
Thus, the multiplexer computes the scaled addition of the two
input probability values.

While the method entails redundancy in the encoding of signal
values, complex operations can be performed using simple logic.
The advantage of a stochastic architecture is that it tolerates faults
gracefully. Compare a stochastic encoding to a standard binary
radix encoding, say with M bits representing fractional values be-
tween 0 and 1. Suppose that the environment is noisy; bit flips
occur and these afflict all the bits with equal probability. With a
binary radix encoding, suppose that the most significant bit of the



AND

x
1
x
2

y
0,1,0,1,1,0

1,0,0,0,1,0

0,0,0,0,1,0

3/6

2/6

1/6

x
2

x
1

MUX

1

0

y

s

(a) (b)

5/6

1,1,0,1,1,1

0,1,0,0,0,1

2/6

0,1,0,0,1,0

2/6

0,1,0,0,1,1

3/6

Figure 2: Implementation of multiplication and scaled addition: (a) Mul-
tiplication; (b) Scaled addition.

data gets flipped. This cause a relative error of 2M−1/2M = 1/2.
In contrast, with a stochastic encoding, the data is represented as
the fractional weight on a bit stream of length 2M . Thus, a single
bit flip only changes the input value by 1/2M , which is minuscule
in comparison.

Figure 3 illustrates the fault tolerance that our approach provides.
The circuit in Figure 3(a) is a stochastic implementation while the
circuit in Figure 3(b) is a conventional implementation. Both cir-
cuits compute the function:

y = x1x2s+ x3(1− s).

Consider the stochastic implementation. Suppose that the inputs
are x1 = 4/8, x2 = 6/8, x3 = 7/8, and s = 2/8. The cor-
responding bit streams are shown above the wires. Suppose that
the environment is noisy and bit flips occur at a rate of 10%; this
will result in approximately three bit flips for the stream lengths
shown. A random choice of three bit flips is shown in the figure.
The modified streams are shown below the wires. With these bit
flips, the output value changes but by a relatively small amount:
from 6/8 to 5/8.

In contrast, Figure 3(b) shows a conventional implementation
of the function with multiplication and addition modules operat-
ing on a binary radix representation: the real numbers x1 = 4/8,
x2 = 6/8, x3 = 7/8, and s = 2/8 are encoded as (0.100)2,
(0.110)2, (0.111)2, and (0.010)2, respectively. The correct result
is y = (0.110)2, which equals 6/8. In the same situation as above,
with a 10% rate of bit flips, approximately one bit will get flipped.
Suppose that, unfortunately, this is the most significant bit of x3.
As a result, x3 changes to (0.011)2 = 3/8 and the output y be-
comes (0.0112) = 3/8. This is a much larger error than we expect
with the stochastic implementation.

1.2 Related Work and Context
The topic of computing reliably with unreliable components dates

back to von Neumann and Shannon [2, 3]. Techniques such as mod-
ular redundancy and majority voting are widely used for fault tol-
erance. Error correcting codes are applied for memory subsystems
and communication links, both on-chip and off-chip.

Probabilistic methods are ubiquitous in circuit and system de-
sign. Generally, they are applied with the aim of characterizing
uncertainty. For instance, statistical timing analysis is used to ob-
tain tighter performance bounds. Many flavors of probabilistic de-
sign have been proposed for integrated circuits. For instance, [4]
presents a design methodology based on Markov random fields,
geared toward nanotechnology; [5] presents a methodology based
on probabilistic CMOS, with a focus on energy efficiency.

On the one hand, our approach is more narrowly circumscribed:
we focus on synthesizing circuits at the logic level, using ordinary
elements (AND, OR, MUX, etc.) without explicit reference to the
underlying technology. On the other hand, our aim is broader: we
present a complete synthesis methodology for circuitry that com-
putes in terms of statistical distributions. The resulting logic pro-
cesses serial or parallel streams that are random at the bit level.
In the aggregate, the computation is robust and accurate, since the
results depend only on the precision of the statistics.
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(a) Stochastic implementation of the function y = x1x2s+ x3(1− s).
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Figure 3: An illustration of the fault tolerance of stochastic logic.

Early work in the same vein established how arithmetic opera-
tions like multiplication, addition, and division can be implemented
with stochastic logic [6, 7]. In prior work, we presented a tech-
nique for synthesizing stochastic logic for the computation of poly-
nomials [8]. The method is based on converting polynomials into
a particular mathematical form – Bernstein polynomials – and then
implementing the computation with generalized multiplexing. In
this paper, we present a reconfigurable architecture that implements
the computation of arbitrary continuous functions with stochastic
logic.

2. THE RECONFIGURABLE ARCHITEC-
TURE

2.1 Synthesizing Arbitrary Continuous Func-
tions

2.1.1 Synthesizing Polynomials
By definition, the computation of polynomial functions entails

multiplications and additions. These can be implemented with the
stochastic constructs described in Section 1.1. However, the method
fails for polynomials with coefficients larger than one, e.g., 1.2x−
1.2x2, since we cannot represent a number greater than one by a
stochastic bit stream.

In [8], we proposed a method for implementing arbitrary polyno-
mials, including those with coefficients greater than one. As long as
the polynomial maps values from the unit interval to values in the
unit interval, then no matter how large the coefficients, we can syn-
thesize stochastic logic that implements it. The procedure begins
by transforming a power-form polynomial into a Bernstein polyno-
mial [9]. A Bernstein polynomial of degree n is of the form

B(x) =

nX
i=0

biBi,n(x), (1)

where each real number bi is a coefficient, called a Bernstein co-
efficient, and each Bi,n(x)(i = 0, 1, . . . , n) is a Bernstein basis
polynomial of the form

Bi,n(x) =

 
n

i

!
xi(1− x)n−i. (2)



A power-form polynomial of degree n can be transformed into
a Bernstein polynomial of degree no less than n. Moreover, if a
power-form polynomial maps the unit interval onto itself, we can
convert it into a Bernstein polynomial with coefficients that are all
in the unit interval, i.e., 0 ≤ bi ≤ 1, for all i = 0, 1, . . . , n. Such a
polynomial can be implemented stochastically based on multiplex-
ing [8].

Example 1
The polynomial f1(x) = 1

4
+ 9

8
x − 15

8
x2 + 5

4
x3 maps the unit

interval onto itself. It can be converted into a Bernstein polynomial
of degree 3:

f1(x) =
2

8
B0,3(x) +

5

8
B1,3(x) +

3

8
B2,3(x) +

6

8
B3,3(x).

Notice that all coefficients of this Bernstein polynomial are in the
unit interval.

2.1.2 Synthesizing Non-Polynomial Functions
It was proved in [8] that stochastic logic can only implement

polynomial functions. In real applications, of course, we often en-
counter non-polynomial functions, such as trigonometric functions.
In this section, we present a method for synthesizing stochastic
logic that implements arbitrary functions approximately via Bern-
stein polynomials. We formulate the problem as follows:

Given f(x), a continuous function on the unit interval, and n,
the degree of a Bernstein polynomial, find real numbers bi, i =
0, . . . , n, that minimizeZ 1

0

(f(x)−
nX
i=0

biBi,n(x))2 dx, (3)

subject to

0 ≤ bi ≤ 1, for all i = 0, 1, . . . , n. (4)

Here we try to find the optimal Bernstein polynomial approxima-
tion by minimizing an objective function, Equation (3), that mea-
sures the approximation error. This is the square of the L2 norm on
the difference between the original function f(x) and the Bernstein
polynomial B(x) =

Pn
i=0 biBi,n(x). The integral is on the unit

interval because x, representing a probability value, is always in
the unit interval. The constraints, Equation (4), guarantee that the
Bernstein coefficients are all in the unit interval, so that the function
can be implemented by stochastic logic.

If we expand (3), then an equivalent objective function is

f(b) =
1

2
bTHb + cT b, (5)

where

b = [b0, . . . , bn]T ,

c = [−
Z 1

0

f(x)B0,n(x) dx, . . . ,−
Z 1

0

f(x)Bn,n(x) dx]T ,

H =

266664
R 1

0
B0,n(x)B0,n(x) dx . . .

R 1

0
B0,n(x)Bn,n(x) dxR 1

0
B1,n(x)B0,n(x) dx . . .

R 1

0
B1,n(x)Bn,n(x) dx

...
. . .

...R 1

0
Bn,n(x)B0,n(x) dx . . .

R 1

0
Bn,n(x)Bn,n(x) dx

377775 .
This optimization problem is, in fact, a constrained quadratic

programming problem. Its solution can be obtained using standard
techniques.

Example 2
Consider the non-polynomial function

f2(x) = x0.45.

(This is the gamma correction function; it is discussed in detail in
Section 3.1.) We approximate this function by a Bernstein polyno-
mial of degree 6. By solving the constrained quadratic optimization
problem, we obtain the Bernstein coefficients:

b0 = 0.0955, b1 = 0.7207, b2 = 0.3476, b3 = 0.9988,

b4 = 0.7017, b5 = 0.9695, b6 = 0.9939

2.2 The ReSC Architecture
As illustrated in Figure 4, our reconfigurable stochastic archi-

tecture (ReSC) is composed of three parts: the Randomizer Unit
generates stochastic bit streams; the ReSC Unit processes these
bit streams; and the De-Randomizer Unit converts the resulting bit
streams to output values.

2.2.1 The ReSC Unit
The ReSC Unit is the kernel of the architecture. It implements

Bernstein polynomials with coefficients in the unit interval. As de-
scribed in Section 2.1, we use this to implement arbitrary continu-
ous functions.
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Figure 4: A reconfigurable stochastic computing architecture. Here the
ReSC Unit implements the target function y = 1

4
+ 9

8
x− 15

8
x2 + 5

4
x3 at

x = 0.5 .

A Bernstein polynomial is implemented by stochastic logic via
“generalized multiplexing” [8]. As illustrated in Figure 4, this
consists of an adder block and a multiplexer block. The adder
block counts the number of ones in an input set {x1, . . . , xn}.
The selecting inputs to the multiplexing block are the outputs of
the adder block; the data inputs to the multiplexer are z0, . . . , zn,
corresponding to the Bernstein coefficients. The output of the mul-
tiplexer y is set to be zi (0 ≤ i ≤ n), where i equals the binary
number computed by the adder.

The stochastic input bit streams to the ReSC Unit are configured
as follows:

• The inputs x1, . . . , xn are independent stochastic bit streams
X1, . . . , Xn that represents the probabilities P (Xi = 1) =
x ∈ [0, 1], for 1 ≤ i ≤ n. The probability x in these bit
streams is controlled by the binary numberCx in the constant
register, as shown in Figure 4. The constant register is a part
of the Randomizer Unit, discussed below.

• The inputs z0, . . . , zn are independent stochastic bit streams
Z0, . . . , Zn representing the probabilities P (Zi = 1) =
bi ∈ [0, 1], for 0 ≤ i ≤ n, where the bi’s are Bernstein
coefficients. Stochastic bit streams Z0, . . . , Zn representing
a specified set of coefficients can be produced by configuring
the binary numbers Czi ’s in the constant registers, as shown
in Figure 4.

The output of the ReSC Unit is a stochastic bit stream Y corre-
sponding to y, the optimal Bernstein approximation of the target
function.



Figure 4 also shows an instance of an ReSC Unit that implements
the function f1(x) from Example 1, evaluated at x = 0.5. The
stochastic bit streams X1, X2 and X3 are independent and each
represent the probability value x = 0.5. The stochastic bit streams
Z0, . . . , Z3 represent probabilities P (Z0 = 1) = 2

8
, P (Z1 =

1) = 5
8

, P (Z2 = 1) = 3
8

, and P (Z3 = 1) = 6
8

. As expected, the
ReSC Unit computes the correct output value: f1(0.5) = 0.5.

2.2.2 The Randomizer and the De-Randomizer
The Randomizer Unit, shown in Figure 4, is used to generate the

requisite stochastic input bit streams. It consist of a pseudo-random
number generator, such as a linear feedback shift register (LFSR),
that generates a new number R on each clock cycle. This number
is compared to a constant input value C; if smaller, it generates a
one as the next bit in the stream; otherwise, it generates a zero. If
we use an LFSR with L bits, we obtain pseudo-random numbers
from the set {1, 2, . . . , 2L−1}. Accordingly, the probabilities val-
ues corresponding to the bit stream are discrete values from the set
S = {0, 1

2L−1
, . . . , 1}; hence there is quantization error. We map

a given number p to the closest number in S. Thus,C is determined
as

C = round(p(2L − 1)) + 1, (6)

where round(x) is the integer closest to x.
The De-Randomizer Unit translates the result of the computa-

tion, expressed as a stochastic bit stream, into numerical form. This
is implemented with a counter that tallies the number of ones that
it sees during the observation interval, and normalizes the count by
the length of the interval to get the fractional output.

Compared to the kernel, the Randomizer and De-Randomizer
units are expensive in terms of the hardware resources required. In-
deed, they dominate the area cost of the architecture. We note that
in some applications, both the Randomizer and De-Randomizer
units could be implemented directly through physical interfaces.
For instance, in sensor applications, analog voltage discriminating
circuits might be used to transform real-valued input and output
values into and out of probabilistic bit streams.

2.3 Error Analysis
By its very nature, stochastic logic introduces uncertainty into

the computation. There are three sources of error.

1. The error due to the Bernstein approximation: Since we
use a Bernstein polynomial with coefficients in the unit inter-
val to approximate a function f(x), there is an approximation
error

e1 =

˛̨̨̨
˛f(x)−

nX
i=0

biBi,n(x)

˛̨̨̨
˛ . (7)

We can use the average L2-norm to measure this:

e1avg =

 Z 1

0

(f(x)−
nX
i=0

biBi,n(x))2 dx

!0.5

(8)

This error only depends on the original function f(x) and
the degree of the Bernstein polynomial; it decreases with in-
creasing n.

2. Quantization error: This is the round-off error that occurs
when mapping real numbers, corresponding to probabilities,
to pseudo-random bit streams. Assume that the pseudo-random
number generator hasL bits. Since we map a given value p to
the closest value p′ in the discrete set S = {0, 1

2L−1
, . . . , 1},

we will compute
Pn
i=0 b

′
iBi,n(x′) instead of

Pn
i=0 biBi,n(x),

where b′i and x′ are the closest numbers to bi and x in S, re-
spectively. Thus, the quantization error is

e2 =

˛̨̨̨
˛
nX
i=0

b′iBi,n(x′)−
nX
i=0

biBi,n(x)

˛̨̨̨
˛ . (9)

Mathematically, we can deduce an upper bound on this error:

e2 ≤
n+ 1

2(2L − 1)
, (10)

where n is the degree of the Bernstein approximation. Thus,
the quantization error is inversely proportional to 2L. We can
mitigate it by increasing the number of bits L of the LFSR.

3. Error due to random fluctuations: Due to the Bernstein ap-
proximation and the quantization effect, the bits in the out-
put stream Y (t) (t = 1, 2, . . . , N) have probability q′ =Pn
i=0 b

′
iBi,n(x′) of being one. The De-Randomizer mea-

sures the rate of ones in the output stochastic bit stream:

y =
1

N

NX
t=1

Y (t). (11)

It is easily seen that the expectation of y is E[y] = q′. How-
ever, because of random fluctuations, the rate of ones in the
output stream y might not be exactly equal to q′. This error
can be measured by the variance:

E[(y − q′)2] = E[(y − E[y])2] = V ar[y]

= V ar[
1

N

NX
t=1

Y (t)] =
q′(1− q′)

N
.

(12)

Thus, the error due to random fluctuations is

e3 = |y − q′| ≈
r
q′(1− q′)

N
. (13)

It is inversely proportional to
√
N , and so decreases with

increasing length of the bit stream.

The overall error is bounded by the sum of the three error compo-
nents:

e = |f(x)− y| ≤= e1 + e2 + e3. (14)

3. EXPERIMENTAL RESULTS
We demonstrate the effectiveness of our method on a collection

of benchmarks for image processing. We describe the design of
one of these, the gamma correction function, in detail. Then we
analyze the performance and robustness of our architecture on all
the test cases.

3.1 A Case Study: Gamma Correction
The gamma correction function is a nonlinear operation used to

code and decode luminance and tri-stimulus values in video and
still-image systems. It is defined by a power-law expression:

Vout = V γin ,

where Vin is normalized over zero and one [10]. We apply a value
of γ = 0.45, which is the value used in most TV cameras.

3.1.1 Synthesis
The coefficients of the Bernstein approximation of degree 6 for

the gamma correction function were given in Example 2. In our
implementation, the LFSR has 10 bits. Thus, by (6), the numbers
that we load into in the constant coefficient registers are:

C0 = 99, C1 = 738, C2 = 357, C3 = 1023,

C4 = 719, C5 = 993, C6 = 1018.

3.1.2 Error Analysis
The error due to the Bernstein approximation, measured by (8),

versus the degree of approximation is shown in Figure 5. The quan-
tization error, measured by (9) and averaged on 11 evaluation points
x = 0, 0.1, . . . , 0.9, 1, versus the number of bits of the LFSR L is
shown in Figure 6. The values on the x-axis are 1/2L, for values of



L from 3 to 10. Clearly, the quantization error is inversely propor-
tional to 2L. The error due to random fluctuations, averaged on 11
evaluation points x = 0, 0.1, . . . , 0.9, 1, versus the lengthN of the
stochastic bit stream is shown in Figure 7. The values on the x-axis
are 1/

√
N , where N is chosen to be 2m, with m = 7, 8, . . . , 13.

The figure clearly shows that the error due to random fluctuations
is inversely proportional to

√
N .

3.1.3 Hardware Cost Comparison
The most popular and straight-forward implementation of the

gamma correction function is based on direct table lookups. For
example, for a display system that supports 8 bits of color depth
per pixel, an 8-bit input / 8-bit output table is placed before or after
the frame buffer. However, this method is inefficient when more
bits per pixel are required. Indeed, for target devices such as medi-
cal imaging displays and modern high-end LCDs, 10 to 12 bits per
pixel are common. Various methods are used to reduce hardware
costs. For example, Lee et al. presented a piece-wise linear poly-
nomial (PLP) approximation [10]. They implemented their design
on a Xilinx Virtex-4 XC4VLX100-12 FPGA. In order to make a
fair comparison, we present implementation results for the same
platform.

Table 1: Hardware comparisons for three implementations of gamma cor-
rection: the direct lookup table method, the piecewise linear polynomial
(PLP) approximation method, and our ReSC method.

Input Output Area [slices]
bits bits Conventional PLP∗ ReSC
8 8 69 − 164

10 10 295 − 177
12 10 486 233 180
13 10 606 242 203
14 10 717 249 236

∗ The hardware usage of the PLP approach is from [10]. Extra memory bits are re-
quired.

Table 1 illustrates the hardware cost of the three approaches. For
the basic 8-bit gamma correction function, our ReSC approach re-
quires 2.4 times the hardware usage of the conventional implemen-
tation. For larger numbers of bits, the hardware usage of our ap-
proach increases by only small increments; in contrast, the hard-
ware usage of the conventional implementation increases by a lin-
ear amount in the number of bits. In all cases, our approach has
better hardware usage than the PLP approximation approach.

3.2 Test Cases
We evaluated our ReSC architecture on ten test cases [11, 12,

13]. These can be classified into three categories: Gamma, RGB→XYZ,
XYZ→RGB, XYZ→CIE-L*ab, and CIE-L*ab→XYZ are popu-
lar color-space converter functions in image processing; Geometric
and Rotation are geometric models for processing two-dimensional
figures; and Example01 to Example03 are operations used to
generate 3D image data sets. We obtained the requisite coefficients
for our ReSC implementation of these functions from code written
in Matlab.

3.2.1 Hardware Cost Comparison
We coded our reconfigurable ReSC architecture in Verilog, and

then synthesized, placed and routed it with Xilinx ISE 9.1.03i on
a Virtex-II Pro XC2VP30-7-FF896 FPGA. Table 2 compares the
hardware usage of our ReSC implementations to conventional hard-
ware implementations. On average, our ReSC implementation achieves
a 40% reduction of LUT usage. If the peripheral Randomizer and
De-Randomizer circuitry is excluded, then our implementation achieves
an 89% reduction of hardware usage.

3.2.2 Software Performance Comparison
For a software implementation, we chose the MicroBlaze 32-

bit soft COTS RISC processor core, version 6.00b, with an FPU
and with a 16KB cache. This processor core was mapped onto
the same FPGA platform as above. It occupied 5386 LUTs. We

Table 2: Comparison of the hardware usage (in LUTs) of conventional
implementations to our ReSC implementations.

ReSC
Conventional System∗ Core∗∗

Module cost cost save (%) cost save (%)
α β (α-β)/α γ (α-γ)/α

Gamma 96 124 -29.2 16 83.3
RGB→XYZ 524 301 42.6 64 87.8
XYZ→RGB 627 301 52.0 66 89.5

XYZ→CIE-L*ab 295 250 15.3 58 80.3
CIE-L*ab→XYZ 554 258 53.4 54 90.3
Geometric 831 299 64.0 32 96.1
Rotation 737 257 65.1 30 95.9
Example01 474 378 20.3 46 90.3
Example02 1065 378 64.5 109 89.8
Example03 702 318 54.7 89 87.3

Average 590 286 40.3 56 89.1

∗ The entire ReSC architecture, including Randomizers and De-Randomizers.
∗∗ The ReSC Unit by itself.

chose 1024 cycles as the default execution time for our stochastic
computation. We compared this to conventional implementations
of the test functions, specified as C programs. These were compiled
for the MicroBlaze core via gcc version 3.4.1, using the default
level 2 optimization.

We use 100MHz, the maximum clock frequency of the MicroB-
laze processor, as the frequency for both implementations. The im-
provement in the execution time with our ReSC approach is shown
in Table 3. Two different methods of programming the test func-
tions were tried. The first method, labeled “Math” in the table,
uses the standard functions from the “math.h” library. This re-
quired just a few lines of C codes. However, with this library, the
operations are performed in floating-point mode, which degrades
the overall performance. Hence, we also optimized the functions
by using table lookups. This approach is labeled “Optimized” in
the table. Compared with the conventional software implementa-
tions, our ReSc approach speeds up the computation by factors of
hundreds or thousands.

Table 3: The execution time (in clock cycles) for software implementations
and the speedup of our ReSC implementation.

Math Optimized
Module time ReSC time ReSC

(x103) speedup (x103) speedup
Gamma 2354 2223 0.15 0.14

RGB→XYZ 7747 7315 793 748
XYZ→RGB 7601 7177 912 861

XYZ→CIE-L*ab 7147 6749 372 351
CIE-L*ab→XYZ 14043 13261 530 500
Geometric 1860 1757 145 137
Rotation 1927 1820 101 95
Example01 3503 3308 61 57
Example02 5211 4920 102 96
Example03 2398 2264 113 107

Average 5379 5079 313 312

Table 4: The average output error of our ReSC implementation compared
to conventional implementations for the color-space converter functions.

Injected Error
Module 1% 2% 10%

ReSC Conv. ReSC Conv. ReSC Conv.
Gamma 0.9 0.7 1.6 1.5 7.5 6.8

RGB→XYZ 0.8 2.7 1.4 5.3 6.2 22.4
XYZ→RGB 1.2 3.2 2.3 5.9 8.2 21.6

XYZ→CIE-L*ab 0.8 2.1 1.4 3.4 7.3 11.7
CIE-L*ab→XYZ 0.8 0.6 1.5 1.2 7.3 7.4

Average 0.9 2.2 1.7 4.0 7.3 15.8
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Figure 5: The Bernstein approximation error
versus the degree of the Bernstein approxima-
tion.
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Figure 6: The quantization error versus 1/2L,
where L is the number of bits of the pseudo-
random number generator.

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

1 / sqrt(N)

m
ea

n 
ab

so
lu

te
 e

rr
or

Figure 7: The error due to random fluctua-
tions versus 1/

√
N , where N is the length of

the stochastic bit stream.

Table 5: The percentage of pixels with errors greater than 20% for conven-
tional implementations and our ReSC implementations of the color-space
converter functions.

Conventional ReSC
Module Injected Error Injected Error

1% 2% 10% 1% - 10%
Gamma 1.4 3.8 13.4 0.0

RGB→XYZ 2.2 4.4 20.7 0.0
XYZ→RGB 11.7 20.0 63.8 0.0

XYZ→CIE-L*ab 6.1 11.6 43.7 0.0
CIE-L*ab→XYZ 2.0 4.0 20.7 0.0

Average 5.0 10.0 37.2 0.0

3.2.3 Fault Tolerance
With increased scaling of semiconductor devices, soft errors caused

by ionizing radition are a major concern, particularly for circuits
operating in harsh environments such as space. To study the fault
tolerance of our ReSC architecture, we performed experiments in-
jecting soft errors. This consisted of flipping the input and output
bits of a given percentage of the computing elements in the circuit
and evaluating the output. For example, if 2% noise was injected,
this implies that 2% of the total number of bits on wires in the
circuit were chosen randomly and flipped. We evaluated the out-
put in terms of the average error in pixel values. Table 4 shows
the results for three different injected noise ratios for conventional
implementations compared to our ReSC implementation of the test
cases. The average output error of the conventional implementation
is about two times that of the ReSC implementation.

The ReSC approach produces dramatic results when the magni-
tude of the errors is analyzed. In Table 5, we consider output errors
that are larger than 20%. With a 10% soft error injection rate, the
conventional approach produces outputs that are more than 20% off
over 37% the time. The result: nearly unreadable images. In con-
trast, our ReSC implementation never produces pixel values with
errors larger than 20%. Figure 8 shows, visually, what a difference
this makes.

4. CONCLUSION AND FUTURE WORK
In a sense, the approach that we are advocating here is simply

a highly redundant, probabilistic encoding of data. And yet, our
synthesis methodology is a radical departure from conventional ap-
proaches. By transforming computations from the deterministic
Boolean domain into arithmetic computations in the probabilistic
domain, we achieve circuit designs that are much more tolerant of
errors. Since the accuracy depends only on the statistical distribu-
tions of the random bit streams, this fault tolerances scales grace-
fully to very large numbers of errors.

Indeed, for data intensive applications where small fluctuations
can be tolerated, but large errors are catastrophic, the advantage of
our approach is dramatic. We showed that we can implement com-

(a) (b) (c)

Figure 8: Results of error injection for implementations of the gamma cor-
rection function. The images in the top row are generated by a conventional
implementation; the images in the bottom row are generated by our ReSC
implementation. Soft errors are injected at a rate of: (a) 1%; (b) 2%; (c)
10%.

putation that never produces errors of greater than 20%, compared
to a conventional implementation that produces such errors 37% of
the time. This fault tolerance is achieved with little or no penalty
in cost or performance: synthesis trials show that our stochastic
architecture requires less area than conventional hardware imple-
mentations. It achieves a large speed up compared to software im-
plementations.

In future work, we will study the trade-offs between computa-
tion time, accuracy, and reliability for stochastic implementations
of larger designs, including a complete Open RISC processor. Also,
we will explore architectures that are tailored to specific domains,
such as scientific computing, targeting applications that are data-
intensive yet statistical in nature.
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