
Reduction of Interpolants for Logic Synthesis
John D. Backes and Marc D. Riedel

Department of Electrical and Computer Engineering
University of Minnesota

200 Union St. S.E., Minneapolis, MN 55455
{back0145, mriedel}@umn.edu

Abstract—Craig Interpolation is a state-of-the-art technique
for logic synthesis and verification, based on Boolean Satisfiability
(SAT). Leveraging the efficacy of SAT algorithms, Craig Interpo-
lation produces solutions quickly to challenging problems such
as synthesizing functional dependencies and performing bounded
model-checking. Unfortunately, the quality of the solutions is
often poor. When interpolants are used to synthesize functional
dependencies, the resulting structure of the functions may be
unnecessarily complex. In most applications to date, interpolants
have been generated directly from the proofs of unsatisfiability
that are provided by SAT solvers. In this work, we propose
efficient methods based on incremental SAT solving for modifying
resolution proofs in order to obtain more compact interpolants.
This, in turn, reduces the cost of the logic that is generated for
functional dependencies.

I. INTRODUCTION

Craig’s Interpolation theorem states that given two formulas
A and B with the relationship A → B, there exists some
formula I such that A → I and I → B (where I contains only
symbols that are present in both A and B). Craig provided a
method for deriving I based on a proof of the implication of
B from A [4].

Boolean Satisfiability (SAT) has found wide applicability
for problems in logic synthesis and verification [1], [9], [11].
A SAT instance is a Boolean formula specified in conjunctive
normal form (CNF). Note that if an instance of SAT is
unsatisfiable and it is divided into clause subsets A and B, these
sets will have the property that A → B, this for any choice of
A and B. Recent work has shown how Craig’s theorem can be
used to derive interpolants from unsatisfiable SAT instances
[11], [15]. These algorithms rely on a resolution-based proof
to show that a set of clauses forms a contradiction. Modern
SAT solvers have been adapted to produce such resolution
proofs [18].

Craig Interpolation has been proposed for synthesizing func-
tional dependencies in combinational logic [2], [10]. For this
application, a SAT instance is created to answer the question of
whether a target function can be implemented with a specified
support set or not. If the target function can be implemented
in terms of the specified support set, then the SAT instance
is unsatisfiable. The SAT instance is partitioned into two sets
of clauses that only have variables in the specified support

This research has been funded in part by a grant from the SRC Focus Center
Research Program on Functional Engineered Nano-Architectonics (FENA),
contract No. 2003-NT-1107 and NSF CAREER award #0845650.

set in common. An interpolant is generated from the proof of
unsatisfiability. The interpolant provides an implementation of
the target function in terms of the support set.

(a + ¬c + d)(¬a + ¬c + d)(a+ c)(¬a + c)(¬d)(d + ¬c)(a + b)

(c) (¬c)

()

Fig. 1. A resolution proof from an unsatisfiable CNF formula. Clauses of A
are shown in red while clauses of B are shown in blue

(a + ¬c + d)(¬a + ¬c + d)(a+ c)(¬a + c)(¬d)(d + ¬c)(a + b)

(d + ¬c)

()

(¬c) (c)

Fig. 2. A different resolution proof from the same unsatisfiable CNF formula.
Clauses of A are shown in red while clauses of B are shown in blue

While generating functional dependencies in this manner is
quick and scalable, it generally does not yield optimal (or even
very good) results. The methods to derive interpolants from
unsatisfiable SAT instances proposed in [11] and [15] follow
fixed trajectories based on the resolution proof generated by
a SAT solver. However, I is an over-approximation of the
variable assignments that cause A to be true; there may be
many different valid implementations for I. Also, there may
be many ways to prove that an unsatisfiable instance of SAT is
indeed unsatisfiable. Consider the two proofs of unsatisfiability
shown in Figures 1 and 2. Both proofs start with the same
original leaf clauses and the same clause partitions A and
B. However, the proofs use a different series of resolutions
to derive the empty clause. Different proofs may result in
different interpolants. The size of the interpolant correlates
with the size of the circuit implementation of the target

function. Using the interpolant generation algorithm proposed
in [11], the interpolants for the clause partition in Figures
1 and 2 result in implementations with 4 gates and 8 gates,
respectively. Even with small problem sizes, poorly structured
resolution proofs can result in overly complex interpolants.
When synthesizing functional dependencies, large interpolants
produce large circuit implementations.

In [3], the authors proposed a strategy to mitigate against
poor-quality solutions. They did not attempt to reduce the
size of interpolants; rather, they suggested repeated trials of
Craig Interpolation with different support sets. They suggested
iterating over different combinations of dependencies, apply-
ing interpolation to each, and picking the one that yields the
smallest implementation. After the implementation is chosen,
traditional combinational synthesis algorithms are applied to
further optimize its structure. Our approach is orthogonal to
this one.

In this work, we explore methods for modifying resolution
proofs in order to obtain more compact interpolants. This,
in turn, reduces the amount of logic that is generated for
functional dependencies. We use the concept of Minimum
Unsatisfiable Cores (MUCs) [8]. An MUC is a minimal set
of constraints that need to be present in order to prove that
a SAT instance is unsatisfiable. We apply incremental SAT
techniques, so our approach is algorithmically efficient.

II. BACKGROUND AND DEFINITIONS

A Boolean formula maps an assignment of Boolean vari-
ables to a Boolean value (Bm → B). We use the convention
that addition denotes an OR operation, multiplication denotes
the AND operation, a “→” denotes implication, and an over-
bar or a “¬” denotes negation. An occurrence of a Boolean
variable in a Boolean formula, either negated or non-negated,
is referred to as a literal. A disjunction of literals is referred to
as a clause. A Boolean formula is in conjunctive normal form
(CNF) if it is represented by a conjunction of clauses. Boolean
Satisfiability (SAT) is the problem of determining whether or
not a CNF formula can evaluate to true for some assignment of
its variables. If there is some variable assignment that causes
the formula to evaluate to true, then the formula is said to be
satisfiable. If there is no variable assignment that causes the
formula to be true, then the formula is said to be unsatisfiable.
We will sometimes use the term SAT instance when referring
to a CNF formula whose satisfiability we are trying to solve.

Given the conjunction of two clauses that share a literal
that is negated in one but not the other, a third clause that
is a disjunction of their remaining literals is implied. This
identity is known as Boolean resolution. The common literal
that is negated in one clause but not the other is called the
pivot variable and the resulting clause is called the resolvent.
Consider the identity

(z0 + x1 + · · ·+ xn)(z̄0 + y1 + · · ·+ ym)→
(x1 + · · ·+ xn + y1 + · · ·+ ym)

Here the pivot variable is z0. A set of clauses can be proved to
be unsatisfiable through a series of resolutions that lead to an
empty clause. This results in a directed acyclic graph (DAG):
the leaves are the original clauses, the intermediate nodes are
clauses proved by resolution, and the single root is the empty

clause. This structure is called a resolution proof. We will
sometimes use the words “node” and “clause” interchangeably
when we are discussing resolution proofs.

When two clauses c1 and c2 resolve a clause c3, c1 and c2

are said to be the parents of c3; c3 is said to be a child of
c1 and c2. Clauses that were used to resolve c1 or c2 are said
to be ancestors of c3. When we say that a node is towards
the beginning of a proof, we are declaring that there were few
resolutions steps taken from the leaves of the proof to reach
this node. When we say that a node is towards the end of a
proof, we are declaring that there are few resolution steps that
need to be taken to reach the empty clause from this node.

Given an unsatisfiable instance of SAT and a bi-partition
of its clauses, set A and set B, Craig’s Interpolation theorem
states that there exists an intermediate formula I, called an
interpolant, such that A → I and I → B. A variable in the
SAT instance is said to be a global variable if it is present in
both clause sets A and B. Likewise, a variable is said to be
local to a clause partition if it is only present in that clause
partition. An interpolant only contains variables that are global
to A and B. We say that a set of clauses is satisfied for some
assignment of the set’s variables if every clause in the set
evaluates to true.

The algorithm in Figure 4, presented in [11], is a procedure
for generating a circuit that implements an interpolant from a
resolution proof and a clause partition. It was adapted from a
procedure presented in [15] to find the Boolean value for an
interpolant given a variable assignment.

a c ¬a c

¬d

a ¬c d ¬a ¬c d a c ¬a c

¬d

Fig. 3. Two interpolants produced by calling p(c) on the empty clause of
a resolution proof. The circuits on the left and right are generated from the
proofs in Figures 1 and 2, respectively

Let g(c) take a clause c and return clause c with only its
global literals present. Let c1 and c2 refer to c’s parent clauses.
Procedure p(c) is defined in Figure 4. Calling p(c) on the empty
clause of a resolution proof will return a DAG whose nodes
represent Boolean functions. In this DAG, the node with no
fanout, corresponding to the empty clause in the resolution
proof, computes a Boolean function in terms of the global
variables of A and B. This Boolean function is an interpolant
of the given clause partition. When we refer to the size of an
interpolant, we mean the number of gates that are needed to
represent it. It should be clear that the size of the interpolant

p(c):
if c is a leaf clause

if c is in A
return g(c)

else
return 1

else let v be the pivot variable
if v is local to A

return p(c1) + p(c2)
else

return (p(c1))(p(c2))

Fig. 4. The algorithm proposed in [11] to produce a circuit that implements
an interpolant of a given clause partition, via a proof of unsatisfiability.

is bounded by the number of nodes in the resolution proof.
Figure 3 shows the results of applying this procedure on the
resolution proofs in Figures 1 and 2.

III. PROPOSED METHODOLOGY

Whether or not a function is a valid interpolant for a
clause partition depends on the space of Boolean assignments
that each clause partition covers. A CNF formula is a non-
canonical representation for a Boolean function so there are
many different valid sets of clauses that cover the same space
of Boolean assignments.

Proposition 1
Given a resolution proof of unsatisfiability of clause set A and
B, we can move all nodes that were resolved from only nodes
of A and all nodes that were resolved from only nodes of B into
the set of leaves of A and B, respectively. This action will still
preserve the space of Boolean assignments covered by A and B.
The interpolant generated from this new resolution proof will be
a valid interpolant of the original clause sets A and B.

Proof:
Consider two leaves n1 and n2 in A (B) and a new node

n3 that is the resolvent of n1 and n2. Since n3 is never false
for a variable assignment that causes n1 and n2 to be true, n3

can be added to the set of leaves of A (B) without reducing
or expanding the space of Boolean assignments that satisfy
A (B). Since the space of Boolean assignments representing
A and B does not change – only the clause representation
changes – an interpolant generated by the procedure in Figure
4 while considering n3 to be a leaf clause will still be a valid
interpolant of the original clause partition.

We can mark nodes resolved from only nodes of A or B
as leaves of A or B, respectively. In theory this optimization
should yield a smaller interpolant for a proof. The intuition
behind this is that we are essentially generating an interpolant
on a proof that has fewer resolutions (since many of the
internal nodes can considered as leaves). However, for most
applications this optimization by itself doesn’t yield a signifi-

cant improvement in interpolant size.1

Example 1
Let us see how this optimization affects the interpolants of the
proofs in Figures 1 and 2. In Figure 1, we notice that resolvent
clause (c) was resolved from two leaf clauses of A (clauses (a+
c) and (ā + c)). This means that we can consider clause (c) to
be a leaf of A. Calling p(c) on this proof with clause (c) marked
as a leaf node will yield the interpolant (c)(d̄).

In the proof shown in Figure 2, we can see that the empty
clause is derived from implications that only occur from par-
tition A. This means that the empty clause can be considered
as a leaf of A. Calling p(c) on this proof with the empty clause
marked as a leaf of A will yield an interpolant of constant 0
(since the OR of the global literals of an empty clause is 0).

This optimization allows us to reduce the number of gates
needed to implement the interpolant in Figure 1 to 1 gate and
the number of gates to implement the proof in Figure 2 to 0
gates.

What may become clear from this observation is that proofs
that tend to have few resolutions between a clause resolved
from A and a clause resolved from B will tend to have smaller
interpolants. This is because more of the internal nodes can be
considered as leaves and therefore fewer gates will be created
by the p(c) procedure. Abusing English a little, we will refer
to a proof of this kind of structure as being more disjoint than
a proof that has more resolutions that occur between a clause
of A and a clause of B (e.g., the proof in Figure 2 is more
disjoint then the proof in Figure 1).

In [8], a SAT-Based methodology is proposed that attempts
to change the order of resolutions in a proof of unsatisfiability
in order to yield a smaller set of leaves that are involved in
the proof. In this work, we attempt to use the same type of
methodology in order to yield a proof that will generate a
smaller interpolant using the algorithm in Figure 4.

Consider some node c in a resolution proof of unsatisfiabil-
ity for a SAT instance. If we follow the series of resolutions
that took place in order to resolve c backwards (towards the
leaves), we eventually arrive at a set of leaves that were used
to derive c. Let R be this set of leaves.

Proposition 2
For all variable assignments that satisfy the set of clauses R, c
must also be satisfied.

Proof:
let c1 and c2 be the clauses that resolved c (c’s parent nodes).

Every variable assignment that satisfies both c1 and c2 must
also satisfy c (because (c1)(c2)→ c). Likewise, every variable

1Often, CNF formulas are generated from a Tstein Decomposition of a
logic circuit [17]. During the course of generating this representation, many
variables are created. When a clause partition is made, there are usually very
few variables that are common to both partitions (indeed this is the case for the
applications in [10] and [11]). When a proof of unsatisfiability is generated,
many of the resolutions involve variables that are only present in one partition.
Performing an optimization that considers internal nodes as leaf clauses will
do very little to improve the overall size of the interpolant with this kind of
proof. This is because p(c), for the most part, will be creating redundant gates.
If we are generating an interpolant using this method on a data structure that
doesn’t allow the creation of redundant logic – such as a structurally hashed
AIG [12] – this optimization will likely yield little benefit to the interpolant
size.

assignment that satisfies both of c1’s parents also satisfies c1

and every variable assignment that satisfies both of c2’s parents
also satisfies c2 (and so on with c1 and c2’s parents). Therefore
every variable assignment that satisfies the ancestor nodes of
c must also satisfy c.

Since R→ c, we know that the SAT instance (R)(c̄) must be
unsatisfiable. In [8], the authors exploit this fact to determine
whether or not a clause c can be derived through resolution
from a set of clauses R. They propose a SAT-Based algorithm
that iteratively checks intermediate nodes to see if they can be
implied by a smaller set of leaves. The goal of the algorithm
is to find a smaller set of leaf clauses that are needed to prove
that the CNF formula is unsatisfiable.

We propose using this type of SAT instance to check to see
whether or not a clause can be resolved by only leaves of set
A or B. We can verify if clause c can be implied from only
clauses of A by checking the satisfiability of (A)(c̄). Likewise
we can check to see if c can be resolved from only clauses of
B by checking the satisfiability of (B)(c̄). If both of these SAT
instances are satisfiable, then we know that clauses of both A
and B are required to resolve clause c. If (A)(c̄) is unsatisfiable
then we know that c can be considered to be a leaf of A. If
(B)(c̄) is unsatisfiable then we know that c can be considered
to be a leaf of B.

We propose using this observation to prove that some nodes
in a resolution proof can be implied by only nodes of A or
only nodes of B and therefore can be considered as leaves of
A or B.

Example 2
Consider the proofs in Figures 1 and 2 again. The proof in
Figure 1 involves only one clause of B: (d + c̄). Here we see
that clause (c̄) is resolved from a clause in A and a clause in B.
In the other proof we can see that the clause (c̄) can be derived
from the resolution of clauses (a + c̄ + d),(ā + c̄ + d), and
(d̄). We can create a SAT instance to check whether or not (c̄)
can be derived from clauses of A. This SAT instance would be:
(a + c̄ + d)(ā + c̄ + d)(a + c)(ā + c)(d̄)(c). We know this
instance will be unsatisfiable based on the resolution shown in
Figure 2. This tells us that we can consider clause (c̄) to be a
leaf of partition A. As shown earlier, marking (c̄) as a leaf of A
allows us to generate an interpolant of constant 0 for this proof.

In what follows, we propose a methodology using these
observations to modify a resolution proof in order to yield a
smaller interpolant.

1) Mark every node that was resolved from only nodes of
A or B as leaves of A or B respectively. Mark every
other node as unvisited.

2) Select a clause c that is not a leaf of A or B and is not
marked as visited. Check the satisfiability of (A)(c̄) and
(B)(c̄).

3) Solve the SAT instances created in the previous step. If
(A)(c̄) is unsatisfiable, mark c as a leaf of A. Otherwise,
If (B)(c̄) is unsatisfiable, mark c as a leaf of B. Mark c
as visited.

4) If c is now marked as a leaf of either A or B, check to
see if its children can trivially be marked as leaves of A

or B and check to see if some of c’s ancestors can be
marked as visited.

5) Repeat steps 2-4 until all nodes are marked as either
visited or as leaves leaves of A or B or until a threshold
number of calls to the SAT solver is reached.

The details of steps 2 and 4 are explained in the next section.

A. Optimizations
The goal of our method is to determine if we can find a

more disjoint proof to generate the interpolant. We can create
SAT instances that check to see if nodes that have ancestor
nodes of both A and B can be labeled as leaves of either A
or B. We will refer to such nodes as mixed nodes. Since the
complexity of the method is dominated by calls to the SAT
solver, we aim to reduce the number of SAT instances that
need to be solved.

Rather than checking every mixed node to see if it can
be considered as a leaf, we can limit ourselves to a fixed or
variable number of nodes that we consider based on the overall
size of the proof. For large proofs generated from large CNF
formulas, many nodes may be mixed. At the same time, the
size of the SAT instance that needs to be solved in order to
determine if a node can be marked as a leaf increases (because
there will be many clauses in A and B). This can lead to a
very long runtime for large CNF formulas. However, we can
halt at anytime and still reduce the size of the interpolant.

In most cases, the nodes toward the bottom of the resolution
proof (close to the empty clause) will tend to be mixed nodes.
If we check these nodes first and verify that a node towards
the end of the proof can be considered as a leaf node, then
we might not need to check some of the node’s ancestors.

Proposition 3
Consider some mixed node n which we prove to be a leaf
of either A or B by solving an instance of satisfiability. If an
ancestor of n is only involved in resolutions that lead to n, then
we do not need to check whether this node is a leaf node.

Proof:
The procedure in Figure 4 terminates on leaves. If n is

marked as a leaf node then the procedure will not be called
on its parents and therefore will never be called on any of n’s
ancestors who are only involved in resolutions leading to n.

Example 3
To better illustrate this point, consider the resolution proof
shown in Figure 5. let us say that nodes 1–5 are mixed nodes
in this proof. If we prove that node 1 can be considered to be a
leaf of A then we will not have to check node 3 (because node
3’s only resolvent is node 1). However, node 4 may still need to
be checked because it is involved in the resolution of node 2. If
we prove that both nodes 1 and 2 can be considered leaves of
A (or B) first, then we do not need to check node 4 (since node
4 will not be reached by p(c) when p(c) is called on the empty
clause).

This is the condition that we are considering in Step 4 of
our methodology when we say that we should check to see if
ancestor nodes can be marked as visited. In this example, we

would mark node 3 as visited, and we would not solve a SAT
instance to see if it can be a leaf node. Showing that a mixed
node can be considered leaf may allow us to check fewer of
the node’s ancestors, but it does not imply that its ancestors
can be considered leaf.2

...()()()()()()()...

(3) (4) (5)

(1) (2)

()

Fig. 5. A resolution proof from an unsatisfiable CNF formula. Clauses of
A are shown in red while clauses of B are shown in blue. Nodes 1, 2, 3, 4,
and 5 are nodes somewhere in the proof

Proposition 4
If we prove that two parents of a mixed node can be considered
leaves of the same clause partition, then this implies their child
clause can be considered as a leaf of this partition.

Proof:
This is basically the same condition as Proposition 1. If

nodes n1 and n2 are marked as leaves of A (B), then their
resolvent node n3 can be added to the same set of clauses as
n1 and n2 without reducing or expanding the set of variable
assignments that satisfy A (B).

Example 4
Once again consider the proof shown in Figure 5. If we show
that nodes 3 and 4 can be considered to be leaves of A (or B),
then we do not need to create a SAT instance to see if node
1 can be marked as a leaf of A (B) because it can trivially be
considered a leaf node of one partition since both of its parents
are leaves of the same partition.

This is the condition that we are considering in Step 4 of
our methodology when check to see if a node’s children can
be trivially marked as leaves.

By initially checking nodes that are close to the leaves of
the proof, we can avoid unnecessary calls to the SAT solver
because we may be able to mark many children of these nodes
as leaves. Also, these nodes are more likely to be converted
to leaves because they are in a sense “closer” to the set of
original leaves.

2Clearly the series of implications that showed the node to be mixed in the
original resolution proof used resolutions that occurred from nodes from both
A and B. Unless the leaves involved in the proof from one partition can be
implied from the other, at least one of the ancestor nodes in the proof must
remain mixed.

However, if we initially check nodes that are close to the end
of the proof (near the empty clause), we can avoid unnecessary
calls to the SAT solver by marking many ancestor nodes as
visited. These nodes are less likely to be proven to be leaves
because they are in a sense “further” from the set of original
leaves.

We will refer to the method of checking nodes towards
the end of the proof first as a backward search, and we will
refer to the method of checking nodes towards the beginning
of the proof first as a forward search. A forward versus a
backward search changes the order in which we consider nodes
in Step 2 of our methodology. Using both methods may allow
us to modify a proof while solving fewer SAT instances.
However, if we check every node (regardless of the order)
both methods will yield the same modified resolution proof.
We determine the ordering of nodes in a resolution proof by
the order in which the clauses were resolved by the SAT solver
that produced the resolution proof.

When a SAT solver produces a resolution proof from an
unsatisfiable CNF formula, it also provides an ordering of
how each clause is implied [18]. The backward search checks
clauses that were resolved at the end of the SAT solver’s
trace first, while the forward search checks clauses that were
resolved at the beginning of the SAT solver’s trace first.

B. Incremental Techniques

Since the SAT instances we are solving are all similar,
we can implement the SAT solving portion of Step 2 of
our methodology using incremental SAT techniques [6]. To
implement these techniques we simply add two new variables
into the SAT instance. For every clause in A we will add literal
aoff and for every clause in B we add boff. When we want to
determine if a node can be considered a leaf of A, we set the
variable assumptions to be aoff = 0 and boff = 1. When we
want to determine if a node can be considered a leaf of B
we set the variable assumptions to be aoff = 1 and boff = 0.
Setting the assumptions in this way essentially tells the SAT
solver to ignore the clauses of set A or B. After setting aoff and
boff, we assume all the literals of the node under inspection to
be zero.

Example 5
Consider again the proof shown in Figure 1. Let us say we want
to use incremental techniques to see if clause (d + c̄) could
be considered to be a clause of A. To solve this we check the
satisfiability of the following CNF formula:

(a + c̄ + d + aoff)(ā + c̄ + d + aoff)(a + c + aoff)(ā + c +
aoff)(d̄ + aoff)(d + c̄ + boff)(a + b + boff)

When we solve this SAT instance we assume aoff = 0 and
boff = 1. We also assume d = 0 and c̄ = 0 (this is the same
as assuming that clause (d + c̄) is 0). Notice if we want to
check any other mixed node in the resolution proof we can
use the same SAT instance but just change the set of variable
assumptions. Since the SAT instance is the same for each call
to the SAT solver, it can remember information about the state
of previous instances and use this information to make later
instances easier to solve [6].

IV. RESULTS

To test our algorithm, we created different SAT instances
that checked for valid functional dependencies in the bench-
marks listed in Tables I through IV. The SAT instances were
generated using the method described in [10]. The support
sets that we considered were for the benchmark’s primary
outputs expressed in terms of other primary outputs and
primary inputs. We iterated over many possible support sets
searching for valid sets of a minimal size. Once we verified
that certain support sets could be used to implement primary
outputs, we created a resolution proof from the corresponding
CNF formula. We then compared the forward and backward
traversals of the resolution graph checking to see if mixed
nodes could be considered to be leaves. We generated the
interpolants from the resolution proofs using the algorithm
in Figure 4. Here we compare the sizes of the interpolants
generated form the algorithm in Figure 4 on modified and
unmodified resolution proofs. We chose benchmarks from the
LGSynth93 [7] benchmark suite that had many possible valid
target functions. Tables I and II provide detailed results for a
particular benchmark, table3. Tables III and IV summarized
the results for other benchmarks. In Tables III and IV, the
numbers in every column are the average value of the field
among all the functional dependencies that were generated.

The experiments were run on an AMD Athlon 64 X2 6000+
CPU with 3 GB of RAM. Only one core was utilized by the
algorithm. Our code was implemented in Berkeley ABC [13]
using MiniSAT for SAT solving [16].

We limited the number of mixed nodes that we checked in
each resolution proof to 2500. (This limit was reached for the
larger resolution proofs.) In each check, we solve two SAT
problems (to see if the node can be considered a leaf of A
or B). The number of mixed nodes that were checked for
each resolution proof is indicated in the “# Nodes Checked”
column. The “# Res Nodes” column indicates the number
of nodes formed by resolution in the original proof. The “#
Found” column is the number of mixed nodes that we found to
be leaves by proving a SAT instance to be unsatisfiable. The
“Orig. Size” column lists the number of AIG nodes in the
interpolant before optimizing the resolution proof. The “New
Size” column lists the number of AIG nodes in the interpolant
after the resolution proof was modified. The “Time” column
indicates the time that it took to search through the nodes of
the resolution proof and to check the SAT instances for the
mixed nodes.

After the interpolants were simplified, we ran the
compress2 script in ABC on the original interpolants and
the interpolants generated after the forward and backward
searches. The idea is that our method could be used initially to
make vast changes to the overall structure of the interpolant,
and then other logic minimization techniques could be applied
to the resulting structure. To show that our algorithm achieves
minimization beyond traditional synthesis techniques, we ran
compress2 on interpolants generated from modified resolu-
tion proofs and non-modified proofs and then compared their
sizes. The percent reduction in size is listed in the “% Change
Compress2” column in Tables III and IV. “% Change” was
calculated by: (New Size - Old Size) / Old Size. The size of
the original and new interpolants after running compress2 is

shown in Tables I and II under the “Orig. Comp2” and “New
Comp2” columns.

We see that modifying the resolution proof often results
in substantial improvements in the interpolant size. After the
compress2 script is run, the % change in size between
interpolants is less significant, but on average is still better than
running compress2 without modifying the proof. Tables
I and II show the results of 10 iterations of compress2.
We have noticed that running multiple iterations doesn’t yield
significant differences in terms of % change in size between
interpolants generated from modified and non modified reso-
lution proofs. Accordingly, Tables III and IV show the results
from just one iteration of compress2.

The time for constructing an interpolant on the modified
resolution proof and running compress2 was negligible
compared to the time it takes to simplify the resolution proof.
In general, the backward search method makes more substan-
tial reductions in size with a smaller number of calls to the
SAT solver compared to the forward search method. Increasing
the maximum number of node checks would likely yield better
results at the expense of longer runtimes – particularly for
some of the larger benchmarks where the maximum number
of node checks was frequently reached.

For a couple of functions presented in Table I the original
and new interpolant sizes were the same, yet the sizes after
running compress2 were different (see functions 1 and
5). This is due to the fact that our implementation gave
the AIG nodes different orderings between the original and
new AIGs. This can sometimes change the results of running
compress2.

In many cases, the primary outputs of benchmarks have very
small support sets. For the benchmarks listed in Tables III and
IV, we did not report the savings for primary output functions
that contained less that 50 AIG nodes. Also, our techniques
performed much better on dependency functions where the
support set contained many primary output functions and
few primary input functions. This is likely due to don’t care
conditions that exist in the circuit that our method implicitly
takes advantage of. We will discuss this in Section V.

V. DISCUSSION

In this work, our goal was to minimize the size of the DAG
that is used to represent an interpolant generated from a reso-
lution proof. With a smaller representation of the interpolant,
we obtain more compact functional dependencies.

Interpolation has also been shown to be a useful tool for
bounded model checking [11]. For this application, the less
that the interpolant over-approximates the on-set of a transition
relation the better. Note that our methods for minimizing
interpolant size do not directly apply to the problem of
producing smaller on-sets. One goal for future work would
be to extend our methodology to this domain. Perhaps we can
bias the resolutions to involve more variables that are not local
to the clause partitions. If so, we could generate an interpolant
with more internal AND operations. This should decrease the
size of the on-set of the interpolant.

Other optimizations that we will investigate include methods
for generating better initial resolution proofs from the SAT
solver. We have noticed that changing the order of variable

table3 Benchmark: Forward Search
Function # # Res. Nodes Orig. Size New Size # Nodes Checked # Found Time (s) Orig. Comp2 New Comp2

0 32262 277 267 2500 61 80.85 105 93
1 128654 1254 1254 2500 0 281.31 328 329
2 95042 638 630 2500 283 218.25 248 226
3 71647 682 648 2500 423 157.66 273 215
4 57015 776 743 2500 432 126.26 380 364
5 47285 657 657 2500 0 106.23 251 233
6 43884 268 245 2500 578 94.67 91 104
7 26714 287 271 2500 335 64.37 144 126
8 31715 116 90 2500 48 79.40 55 34
9 13182 43 36 1090 65 17.25 22 18

10 70964 867 850 2500 576 146.85 413 397
11 31772 253 229 2500 67 80.12 86 107
12 45784 376 360 2500 404 98.61 172 184
13 29078 408 373 2500 757 64.73 130 55

TABLE I
RESULTS OF THE FORWARD-SEARCH METHOD ON THE table3 BENCHMARK. EACH FUNCTION IS A PO EXPRESSED IN TERMS OF THE PIS AND OTHER

POS.

table3 Benchmark: Backward Search
Function # # Res Nodes Orig Size New Size # Nodes Checked # Found Time (s) Orig Comp2 New Comp2

0 32262 277 129 2500 20 85.88 105 58
1 128654 1254 1238 2500 5 287.62 328 346
2 95042 638 574 2500 8 225.37 248 217
3 71647 682 469 2500 45 179.96 273 177
4 57015 776 490 2500 26 144.83 380 193
5 47285 657 611 2500 8 114.33 251 242
6 43884 268 224 2500 8 107.96 91 106
7 26714 287 87 2500 27 76.61 144 51
8 31715 116 76 2500 15 85.23 55 34
9 13182 43 36 1017 3 16.55 22 18

10 70964 867 349 2500 41 179.22 413 192
11 31772 253 191 2500 8 82.38 86 50
12 45784 376 203 2500 34 120.00 172 117
13 29078 408 112 2500 32 84.29 130 37

TABLE II
RESULTS OF THE BACKWARD-SEARCH METHOD ON THE table3 BENCHMARK. EACH FUNCTION IS A PO EXPRESSED IN TERMS OF THE PIS AND OTHER

POS.

decisions in the SAT solver can significantly reduce the initial
size of the resolution proof. Much of the current research
in SAT solving pertains to heuristics for making variable
decisions that will lead to solving SAT instances faster [16],
[14], [5]. Perhaps some of this intuition could be applied to
variable decision heuristics that result in resolution proofs that
produce smaller interpolants.

a b a c

f

g h

Fig. 6. A circuit with an observability don’t care of g = 1, h = 0

If we use interpolants as a starting point to generate a
structure to perform traditional synthesis, these traditional
techniques will perform better. When computing interpolants
in the context of synthesizing functional dependencies, the
function that is generated implicitly takes advantage of don’t

care conditions that exist in the circuit. Consider the circuit
shown in Figure 6. We see that function f can be expressed
in terms of functions g and h. If we create a SAT instance to
check whether or not f can be expressed in terms of variables
g and h, the instance will be unsatisfiable. We can then use
the resolution proof from this unsatisfiable instance to generate
an interpolant whose function is the implementation of f in
terms of g and h. However, we can see from Figure 6 that
when g is logic 1, h must also be logic 1 (because of input
a). After the interpolant that implements f is generated, f
may be either logic 1 or logic 0 for the assignment g = 1 h
= 0 (because the interpolant is an over-approximation of the
on-set of f). If we pass the interpolant to traditional synthesis
algorithms to optimize it, the algorithms will not know about
the don’t care condition on f and g.3 However, if we optimize
the resolution proof before generating the interpolant, then we
can force the assignment of g = 1 h = 0 to cause f to evaluate
to logic 0. Using this implementation of f as a starting point

3Here we are assuming that the function f(g, h) is passed to a synthesis
algorithm in isolation from the rest of the circuit. If the interpolant is
not considered in isolation, then traditional synthesis algorithms may take
advantage of the don’t care condition on f . The idea we are trying to present
is that if g and h are many levels away from the primary inputs of the
circuit, then local logic optimizations may not be able to detect this don’t
care condition.

Forward Search
Benchmark # Res Nodes # Nodes Checked # Found % Change % Change Compress2 Time (s)
apex1 28279 2413 30 -4.89% -2.73% 69.48
apex3 68585 1494 21 -2.12% -1.47% 140.99
styr 9373 2143 88 -8.71% -5.71% 18.3
s1488 5748 824 29 -9.24% -8.41% 7.62
s1494 10488 1266 21 -6.69% -4.43% 15.51
s641 46416 1886 39 -26.67% -2.33% 97.45
s713 42412 1910 89 -36.00% -3.70% 89.16
table5 35373 2500 252 -13.83% -4.08% 48.05

vda 12951 2011 120 -18.78% -17.33% 27.34
sbc 13951 1094 8 -1.46% -1.08% 19.09

TABLE III
A TABLE OF THE AVERAGED RESULTS USING THE FORWARD-SEARCH METHOD AMONG DIFFERENT BENCHMARKS.

Backward Search
Benchmark # Res Nodes # Nodes Checked # Found % Change % Change Compress2 Time (s)
apex1 28279 2384 6 -8.95% -5.84% 72.03
apex3 68585 1485 5 -8.41% -5.24% 145.63
styr 9373 2124 10 -11.57% -10.14% 19.36
s1488 5748 797 5 -9.92% -9.59% 7.98
s1494 10488 1241 7 -6.93% -5.19% 15.83
s641 46416 1820 14 -42.22% -2.78% 95.37
s713 42412 1724 17 -43.90% -6.20% 82.86
table5 35373 2358 7 -26.67% -15.83% 81.16

vda 12951 1850 7 -21.72% -19.72% 27.07
sbc 13951 1087 1 -1.46% -0.92% 19.09

TABLE IV
A TABLE OF THE AVERAGED RESULTS USING THE BACKWARD-SEARCH METHOD AMONG DIFFERENT BENCHMARKS.

for traditional multilevel synthesis algorithms will yield better
results.

We discussed the use of incremental SAT-based techniques
to modify a resolution proof to yield a smaller interpolant.
We positioned this method as a starting point for traditional
synthesis algorithms. Perhaps this approach is more broadly
applicable. In [10] it was shown that Craig Interpolation can
be used to generate implementations for functions with a given
support set. The choice of support set directly effects the clause
partition in the SAT instance. If a larger support set is chosen,
then a more constrained CNF formula is constructed. Using
our approach, perhaps we could create a resolution proof from
an unsatisfiable SAT instance (with a large support set) and
perform optimizations on this proof to improve the entire
circuit. Unlike modern synthesis algorithms that perform in-
cremental operations on small portions of a network, working
with a resolution proof might allows us to make incremental
SAT calls that can make vast changes to a network’s structure.

REFERENCES

[1] J. Backes, B. Fett, and M. D. Riedel. The analysis of cyclic circuits with
Boolean satisfiability. In International Conference on Computer-Aided
Design, pages 143–148, 2008.

[2] J. Backes and M. D. Riedel. The synthesis of cyclic dependencies with
Craig interpolation. In International Workshop on Logic and Synthesis,
pages 24–30, 2009.

[3] M. L. Case, A. Mishchenko, R. K. Brayton, J. Baumgartner, and
H. Mony. Invariant-strengthened elimination of dependent state ele-
ments. In Formal Methods in Computer-Aided Design, pages 9–17,
2008.

[4] W. Craig. Linear Reasoning: A New Form of the Herbrand-Gentzen
Theorem. Symbolic Logic, 22(3):250–268, 1957.

[5] N. Dershowitz, Z. Hanna, and E. Nadel. A clause-based heuristic for
SAT solvers. In International Conference on Theory and Applications
of Satisfiability Testing (SAT), pages 46–60. Springer-Verlag, 2005.

[6] N. Eén and N. Sörensson. An extensible sat-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, SAT, volume 2919 of
Lecture Notes in Computer Science, pages 502–518. Springer, 2003.

[7] Benchmarks from the 1993 Int’l Workshop on Logic Synthesis avail-
able at http://www.cbl.ncsu.edu/.

[8] R. Gershman, M. Koifman, and O. Strichman. An approach for
extracting a small unsatisfiable core. Formal Methods in System Design,
33(1-3):1–27, 2008.

[9] T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 11(1):4–15, 1992.

[10] C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, and A. Mishchenko. Scalable
exploration of functional dependency by interpolation and incremental
SAT solving. In International Conference on Computer-Aided Design,
pages 227–233, 2007.

[11] K. L. McMillan. Interpolation and SAT-based model checking. In
International Conference on Computer Aided Verification, pages 1–13,
2003.

[12] A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis. In Design
Automation Conference, pages 532–536, 2006.

[13] A. Mishchenko et al. ABC: A system for sequential synthesis and
verification, 2007.

[14] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Design Automation
Conference, pages 530–535, 2001.

[15] P. Pudlak. Lower bounds for resolution and cutting plane proofs and
monotone computations. Journal of Symbolic Logic, 62(3):981–998,
1997.

[16] N. Sörensson et al. Minisat v1.13 – a SAT solver with conflict-clause
minimization available at http://minisat.se/downloads/.

[17] G. S. Tseitin. On the complexity of derivations in propositional calculus,
1968.

[18] L. Zhang and S. Malik. Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applica-
tions. In Design, Automation and Test in Europe, pages 10880–10885,
2003.

