
EE i5393 UMN

Circuits, Computation, and Biology Winter 2015

⊕ ⊕

Homework # 2

Due March 27, 2015

The theory of reaction kinetics underpins our understanding of biological and chem-

ical systems. It is a simple and elegant formalism: chemical reactions define rules

according to which reactants form products; each rule fires at a rate that is pro-

portional to the quantities of the corresponding reactants that are present. On the

computational front, there has been a wealth of research into efficient methods for

simulating chemical reactions, ranging from ordinary differential equations (ODEs)

to stochastic simulation. On the mathematical front, entirely new branches of theory

have been developed to characterize the dynamics of chemical reaction networks.

Most of this work is from the vantage point of analysis: a set of chemical reaction

exists, designed by nature and perhaps modified by human engineers; the objective

is to understand and characterize its behavior. Comparatively little work has been

done at a conceptual level in tackling the inverse problem of synthesis: how can one

design a set of chemical reactions that implement specific behavior?

This homework will consider the computational power of chemical reactions from

both a deductive and an inductive point of view.

Analyzing Chemical Reaction Networks

A molecular system consists of a set of chemical reactions, each specifying a rule for

how types of molecules combine. For instance,

X1 + X2
k−→ X3,

specifies that one molecule of X1 combines with one molecule of X2 to produce one

molecule of X3. The rate at which the reaction fires is proportional to (1) the concen-

trations of the participating molecular types; and (2) a rate constant k. (This value is

not constant at all; rather it is dependent on factors such as temperature and volume;

however, it is independent of molecular quantities, and so called a “constant.”)



EE 5393, Winter ’15 2

Given a set of such reactions, we can model the behavior of the system in two ways:

1. In a continuous sense, in terms of molecular concentrations, with differential

equations;

2. In a discrete sense, in terms of molecular quantities, through probabilistic

discrete-event simulation.

Consider the reactions:

R1 : 2X1 + X2 → 4X3 k1 = 1

R2 : X1 + 2X3 → 3X2 k2 = 2

R3 : X2 + X3 → 2X1 k3 = 3

For a continuous model, let x1, x2 and x3 denote the concentrations of X1, X2, and

X3, respectively. (Recall that concentration is number of molecules per unit volume.)

The behavior of the system is described by the following set of differential equations:

dx1

dt
= −x2

1x2 − 2x1x
2
3 + 6x2x3

dx2

dt
= −x2

1x2 + 6x1x
2
3 − 3x2x3

dx3

dt
= 4x2

1x2 − 2x1x
2
3 − 3x2x3

For the discrete model, let the state be S = [x1, x2, x3], where x1, x2 and x3 denote

the numbers of molecules of types X1, X2, and X3, respectively. (Here we use actual

integer quantities, not concentrations.) The firing probabilities for R1, R2 and R3 are

computed as follows:

p1(x1, x2, x3) =
1
2
x1(x1 − 1)x2

1
2
x1(x1 − 1)x2 + x1x3(x3 − 1) + 3x2x3

,

p2(x1, x2, x3) =
x1x3(x3 − 1)

1
2
x1(x1 − 1)x2 + x1x3(x3 − 1) + 3x2x3

,

p3(x1, x2, x3) =
3x2x3

1
2
x1(x1 − 1)x2 + x1x3(x3 − 1) + 3x2x3

.



EE 5393, Winter ’15 3

Suppose that S = [3, 3, 3]. Then the firing probabilities for R1, R2 and R3 are

p1(3, 3, 3) =
9

9 + 18 + 27
=

1

6
,

p2(3, 3, 3) =
18

9 + 18 + 27
=

1

3
,

p3(3, 3, 3) =
27

9 + 18 + 27
=

1

2
,

respectively.

N.B. In the continuous model, the rate of change of type is proportional to xn where

x is the concentration of a reaction and n is the coefficient. In the discrete model,

the probability is proportional to
(
x
n

)
. This is a subtle difference. See the paper by

Gillespie for an explanation.

Problem [5 points]

Suppose that we define the following “outcomes”:

• C1: states S = [x1, x2, x3] with x1 > 5.

• C2: states S = [x1, x2, x3] with x2 ≥ 7.

• C3: states S = [x1, x2, x3] with x3 < 5.

Beginning from the state S = [3, 5, 7], compute (or estimate) Pr(C1), Pr(C2), and

Pr(C3).

2



EE 5393, Winter ’15 4

Now, instead of “outcomes”, let’s analyze probabilities in a more general sense.

Consider again the reactions:

R1 : 2X1 + X2 → 4X3 k1 = 1

R2 : X1 + 2X3 → 3X2 k2 = 2

R3 : X2 + X3 → 2X1 k3 = 3

Let the state be S = [x1, x2, x3], where x1, x2 and x3 denote the numbers of molecules

of types X1, X2, and X3, respectively.

Suppose that systems begins in the state S = [3, 3, 3] (with probability 1). After one

step:

• it is in state [1, 2, 7] with probability 1
6
.

• it is in state [2, 6, 1] with probability 1
3
.

• it is in state [5, 2, 2] with probability 1
2
.

So, considering the first type, X1, its discrete probability distribution after one step

is

• Pr[X1 = 1] = 1
6
,

• Pr[X1 = 2] = 1
3
,

• Pr[X1 = 5] = 1
2
,

After many steps, the system can be in many different states, with different quantities

of X1. (Of course, some of these states may have the same quantity of X1.) The

probability distribution may look something like:

• Pr[X1 = 0] = 0.012,

• Pr[X1 = 1] = 0.025,

• Pr[X1 = 2] = 0.036,

• Pr[X1 = 3] = 0.061,



EE 5393, Winter ’15 5

• Pr[X1 = 4] = 0.12,

• Pr[X1 = 5] = 0.19,

• Pr[X1 = 6] = 0.24,

• Pr[X1 = 7] = 0.19,

• Pr[X1 = 8] = 0.116,

• Pr[X1 = 9] = 0.010.

(Note that this is not a real calculation.)

Problem [5 points]

For the set of reactions above, beginning from the state [3, 5, 7] compute (or estimate)

the mean and variance for the probability distributions of X1, X2 and X3 – each

separately – after 5 steps. 2



EE 5393, Winter ’15 6

Randomness is inherent to all forms of biochemical computation: at any given instant,

the choice of which reaction fires next is a matter of chance. Certain biochemical sys-

tems appear to exploit this randomness for evolutionary advantage, choosing between

different outcomes with a probability distribution – in effect, hedging their bets with

a portfolio of responses that is carefully tuned to the environmental conditions.

For instance, the lambda bacteriophage, a virus that infects the E. coli bacteria,

chooses one of two survival strategies: either it integrates its genetic material with

that of its host and then replicates when the bacterium divides (call this “stealth”

mode); or else it manipulates the molecular machinery of its host to make many

copies of itself, killing the bacterium in the process, and thereby releasing its progeny

into the environment (call this the “hijack” strategy). The choice of which strategy to

pursue, while based on environmental inputs, is probabilistic: in some cases, the virus

chooses the first strategy, say with probability p and the second with probability 1−p.

Clearly the virus is hedging its bets, an approach that provides significant advantages

in an evolutionary context.

A model for the biochemistry of lambda is at:

http://cctbio.ece.umn.edu/ee5393-2015-spring/lambda.r

A set of initial values for the molecular types is at:

http://cctbio.ece.umn.edu/ee5393-2015-spring/lambda.in

With this model, we can assume that lambda has entered “stealth” mode when cI2 >

145; it has entered “hijack” mode when Cro2 > 55.

Problem [5 points]

For the reactions and initial values given, compute the probability that lambda has

entered “stealth” mode vs. “hijack” mode for a range of values of the molecular type

MOI = 1 . . . 10.

For this problem, you can either use your own code for simulating chemical reactions

from Homework 1 or use my code:

http://cctbio.ece.umn.edu/ee5393-2014-spring/aleae.zip.

2



EE 5393, Winter ’15 7

Synthesizing Chemical Reaction Networks

The task of synthesizing a set of chemical reactions to compute a desired function

is conceptually open-ended. Like most engineering problems, there are often many

possible solutions.

In class, we saw a chemical reaction network that performs multiplication. What

follows are some other examples of chemical reaction networks that compute simple

functions. In describing the functions that the modules implement, we add subscripts

to the quantities of molecular types to denote when these quantities exist: zero indi-

cates that this is the initial quantity, whereas infinity indicates that it is the quantity

after the module has finished.

Exponentiation:

Y∞ = 2X0

This module consumes molecules of an input type one at a time, doubling the quantity

of an output type for each. Its behavior is described by the following pseudocode:

1 ForEach x {

2 Y = 2 * Y;

3 }.

The reactions are:

x
slow−→ a

a + y
faster−→ a + 2y′

a
fast−→ ∅

y′
medium−→ y.

Initially, Y is one and all other quantities (except X) are zero.

Logarithm:

Y∞ = log2(X0)

This module is similar to the exponentiation module, except that instead of doubling

the output, the input is forced to halve itself; each time it does so, the output is

incremented by one. Its behavior is described by the following pseudocode:



EE 5393, Winter ’15 8

1 While Not(X==1) {

2 X = X/2;

3 Y = Y+1;

4 }.

The reactions are:

b
slow−→ a + b

a + 2x
faster−→ c + x′ + a

2c
faster−→ c

a
fast−→ ∅

x′ medium−→ x

c
medium−→ y.

Initially, B is a small but non-zero quantity and all other quantities (except X) are

zero.

Problem [10 points]

Produce a chemical reaction network that computes

Z∞ = X0 log2 Y0

Demonstrate that your solution works (either mathematically, or by simulating it

continuously or stochastically).

Problem [10 points]

Produce a chemical reaction network that computes

Y∞ = 2log2 X0 (1)

(2)

(No points for noticing that Y∞ = X0. Your network must compute this as shown!)

Demonstrate that your solution works (either mathematically, or by simulating it

continuously or stochastically).



EE 5393, Winter ’15 9

Problem [15 points]

(no collaboration)

Consider the following representation of real numbers. A real value x between 0 and

1 is represented as x1

x1+x2
, where x1 and x2 are positive integers.

Construct a set of chemical reactions that multiplies two real numbers a and b repre-

sented this way, producing a resulting number c, also represented this way. Let the

quantities or concentrations of molecular types A1 and A2 represent a, those of B1 and

B2 represent b, and those of C1 and C2 represent c. Demonstrate that your solution

works (either mathematically, or by simulating it continuously or stochastically).



EE 5393, Winter ’15 10

Two-Terminal Switches

This problem is based on C. E. Shannon’s Masters Thesis from 1938, “A Symbolic

Analysis of Relay and Switching Circuits.” This classical paper was the first work

that connected between logic and circuit design.

In his seminal Master’s Thesis, Claude Shannon made the connection between Boolean

algebra and switching circuits. He considered two-terminal switches corresponding

to electromagnetic relays. An example of a two-terminal switch is shown in the top

part of Figure 1. The switch is either ON (closed) or OFF (open). A Boolean func-

tion can be implemented in terms of connectivity across a network of switches, often

arranged in a series/parallel configuration. An example is shown in the bottom part

of Figure 1.

x4
x5

x6

x2 x3

x1 x6x2

x1 x3x2

Figure 1: Two-terminal switching network implementing the Boolean function x1x2x3 +

x1x2x5x6 + x2x3x4x5 + x4x5x6.

Each switch is controlled by a Boolean variable. If the variable is 1 (0) then the

corresponding switch is ON (OFF). The Boolean function for the network evaluates

to 1 if there is a closed path between the left and right nodes. It can be computed by

taking the sum (OR) of the product (AND) of literals along each path. The function

is

x1x2x3 + x1x2x5x6 + x4x5x2x3 + x4x5x6.

We use the modern convention: 1 denotes a closed circuit, 0 denotes an open circuit,

+ (addition) denotes a parallel connection and · (multiplication) denotes a series

connection. (Shannon used the opposite of the modern convention for everything: 1

for open, + for a series connection, etc. Forget about that.)

Using De Morgan’s Theorem and the theorems given on page 476 of Shannon’s Mas-

ters Thesis, simplify the following circuits as much as possible and draw the simplified



EE 5393, Winter ’15 11

circuits. The number of switching elements achievable in the final answer is given for

you.

Problem [5 points]

This circuit can be simplified down to 6 switching elements. (Note that 4 of the

switching elements shown are for negated variables.)

a

X

X

X’ Y

W S
Z

Z’ V

bZ’
V

Z

W

S’

ZY

V

Problem [5 points]

This circuit can be simplified down to 6 switching elements. (Note that 4 of the

switching elements shown are for negated variables.)

b

S Y X

Y’

V

W

S Z

YS Y Z’

X’

S V
a

X’

Y S

W

Problem [5 points]

This circuit can be simplified down to 9 switching elements. (Note that 7 of the

switching elements shown are for negated variables.)

Y

X

Y

W

S

V

V

V

Z

W

S

X

S

X

S

Y

W

Y

a

Z

S

V

S

b
V

ZZ

YX

X

X

V

Problem [5 points]

This circuit can be simplified down to 8 switching elements (7 for extra credit). (Note

that 9 of the switching elements shown are for negated variables.)



EE 5393, Winter ’15 12

a

Z

X

Z

Y

X’

Z

V

Y’

X

S

V’

b
V’

SY’

SY

V’
S

Y

Y’

Z’

X
Z

S

Y

X
YYS’

Y

V
W

S

S

Two-Terminal Switches, but Multiple Circuit Terminals (no collaboration)

A generalization of the switching circuit model is a circuit with multiple circuit ter-

minals. A function Fab is 1 if there is a closed path between terminals a and b, and

0 otherwise. With multiple circuit terminals, a, b, c, d, . . ., different functions can be

implement between pairs of terminals. For instance, for the circuit

x y'

z

a b

e

c

x' y
d f

we have

Faf = xyz

Fbd = x′z

Fcf = 0.

and so on. For the circuit

w

x

y

z

a b c



EE 5393, Winter ’15 13

we have

Fab = x + w

Fbc = y + z

Fac = (x + w)(y + z).

As these examples show, you can use either a variable or its complement to control a

switch. (Each terminal is, in fact, any stretch of wire.)

Problem [5 points]

Construct a circuit with 3 switches that implements the functions

f1 = xy

f2 = x′y

Problem [5 points]

Construct a circuit with 4 switches that implements the functions

f1 = xy + x′y′

f2 = x′y + xy′

Problem [5 points]

Construct a circuit with 6 switches that implements the functions

f1 = x(y + z)

f2 = y(x + z)

f3 = z(x + y)

f4 = x + yz

f5 = y + xz

f6 = z + xy

Problem [15 points]

Construct a circuit with as few switches as possible that implements all functions of



EE 5393, Winter ’15 14

two variables. A solution with 8 switches gets full credit. These functions are

f0 = 0

f1 = x

f2 = x′

f3 = y

f4 = y′

f5 = xy

f6 = xy′

f7 = x′y

f8 = x′y′

f8 = x + y

f10 = x + y′

f11 = x′ + y

f12 = x′ + y′

f13 = xy′ + x′y

f14 = xy + x′y′

f15 = 1

The constant 1 function is trivial: choose same terminal, e.g., connect a back to a. So

forget about that one. For all the others, including the constant 0 function, you must

select a pair of distinct terminals. As in the example above, the constant 0 function

is implemented between a pair of terminals that are never connected.


