Synthesizing Cubes to Satisfy a Given Intersection Pattern

Weikang Qian
Electrical and Computer Engineering, University of Michigan-Shanghai Jiao Tong University
Joint Institute, Shanghai 200240, China

Marc D. Riedel
Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455

Ivo Rosenberg
Mathematics and Statistics, University of Montreal, Montreal, Quebec, Canada H3C 3J7

Abstract

In two-level logic synthesis, the typical input specification is a set of minterms defining the on set and a set of minterms defining the don’t care set of a Boolean function. The problem is to synthesize an optimal set of product terms, or cubes, that covers all the minterms in the on set and some of the minterms in the don’t care set. In this paper, we consider a different specification: instead of the on set and the don’t care set, we are given a set of numbers, each of which specifies the number of minterms covered by the intersection of one of the subsets of a set of λ cubes. We refer to the given set of numbers as an intersection pattern. The problem is to determine whether there exists a set of λ cubes to satisfy the given intersection pattern and, if it exists, to synthesize the set of cubes. We show a necessary and sufficient condition for the existence of λ cubes to satisfy a given intersection pattern. We also show that the synthesis problem can be reduced to the problem of finding a non-negative solution to a set of linear equalities and inequalities.

Keywords: Boolean product, cube, minterm, two-level logic synthesis
1. Introduction

Two-level logic synthesis is a well-developed and mature topic (Brayton et al., 1984; Rudell and Sangiovanni-Vincentelli, 1987). The typical input specification for a two-level synthesis problem is the on set and the don’t care set (or in some cases, the off set) of a Boolean function. The on set and the don’t care set consist of minterms that define when the function evaluates to one and when its evaluation can be either zero or one, respectively. The problem is to synthesize an optimal set of product terms, or cubes, that covers all the minterms in the on set and some of the minterms in the don’t care set.

In this work, we consider a related yet different problem pertaining to the synthesis of a set of cubes. A set of cubes, besides defining a Boolean function, also defines a set of numbers, each of which corresponds to the number of minterms covered by the intersection of one of the subsets of the set of cubes. For example, given a set of three cubes on four variables \(x_0, x_1, x_2, x_3 \), which are \(c_0 = x_0x_1 \), \(c_1 = x_2 \), and \(c_2 = x_1x_3 \), the numbers of minterms covered by \(c_0, c_1, c_2, c_0c_1, c_0c_2, c_1c_2 \), and \(c_0c_1c_2 \) are 4, 8, 4, 2, 2, 2, and 1, respectively. We refer to this set of numbers as an intersection pattern.

Given a set of cubes, it is trivial to get its intersection pattern. However, it is nontrivial to answer the reverse problem: given a set of numbers that corresponds to an intersection pattern of \(\lambda \) cubes, how can one synthesize a set of \(\lambda \) cubes to satisfy the given intersection pattern, or prove that there is no solution to the given intersection pattern? We will call this the \(\lambda \)-cube intersection problem. It is what we intend to solve in this paper.

Definition 1

Define \(V(f) \) to be the number of minterms contained in a Boolean function \(f \). □

Example 1

In a 3-cube intersection problem on 4 variables \(x_0, x_1, x_2, x_3 \), if we are given the intersection pattern as

\[
V(c_0) = 4, V(c_1) = 8, V(c_2) = 4,
\]
\[
V(c_0c_1) = V(c_0c_2) = V(c_1c_2) = 2, V(c_0c_1c_2) = 1,
\]
we can synthesize cubes \(c_0 = x_0 x_1 \), \(c_1 = x_2 \), and \(c_2 = x_1 x_3 \) to satisfy the intersection pattern. □

We are interested in the \(\lambda \)-cube intersection problem since it pertains to synthesis for probabilistic computation, a new paradigm that we have advocated (Qian et al., 2009). In this paradigm, digital circuits are designed to transform a set of input probabilities, encoded by random bit streams, into output probabilities, also encoded by random bit streams (Qian et al., 2009). A fundamental problem in this context is how to synthesize combinational logic that takes independent inputs with probability 0.5 of being one and generates other probabilities as outputs. For example, we can use the combinational circuit shown in Figure 1 to generate an output probability \(\frac{3}{8} \) from three independent input probabilities 0.5.

![Figure 1: An AND gate followed by a NOR gate transforms three independent random inputs of probability 0.5 of being one into an random output of probability \(\frac{3}{8} \) of being one. The inputs and output of the circuit are random bit streams. The numbers in the parentheses denote the probabilities.](image)

For combinational logic with \(n \) inputs with each input independently having probability 0.5 of being one, each input combination has probability of \(\frac{1}{2^n} \) of occurring. If the Boolean function contains exactly \(m \) minterms, then the probability that the output is one is \(\frac{2^m}{2^n} \). Conversely, if we want to synthesize a probability \(\frac{m}{2^n} \) \((0 \leq m \leq 2^n)\), we can simply implement it with a Boolean function of \(m \) minterms. However, there are \(\binom{2^n}{m} \) Boolean functions that contain exactly \(m \) minterms and different functions have different implementation cost. This motivates a new problem in logic synthesis: if we want to synthesize a logic circuit such that it covers exactly \(m \) minterms, while which \(m \) minterms are covered does not matter, then how can we design an optimal logic circuit?

We focus on two-level implementation of logic circuits (Brayton et al., 1984). Minimizing the area of the two-level implementation is equivalent to minimizing the number
of cubes of the sum-of-product (SOP) representation of a Boolean function (Brayton et al., 1984). Thus, the problem, which we will refer to as the arithmetic two-level minimization problem, can be formulated as:

Given the number of variables \(n \) *for a Boolean function and an integer* \(0 \leq m \leq 2^n \), *find a SOP Boolean expression with the minimum number of cubes that contains exactly* \(m \) *minterms.*

For the arithmetic two-level minimization problem, our proposed solution is based on the inclusion-exclusion principle:

Given \(\lambda \) *cubes* \(c_0, \ldots, c_{\lambda-1} \), *the number of minterms cover by the union of the* \(\lambda \) *cubes is*

\[
V\left(\bigvee_{i=0}^{\lambda-1} c_i\right) = \sum_{i=0}^{\lambda-1} V(c_i) - \sum_{0 \leq i < j \leq \lambda-1} V(c_i c_j) + \sum_{0 \leq i < j < k \leq \lambda-1} V(c_i c_j c_k) - \cdots + (-1)^{\lambda-1} V\left(\prod_{i=0}^{\lambda-1} c_i\right). \tag{1}
\]

The inclusion-exclusion principle connects the arithmetic two-level minimization problem with the \(\lambda \)-cube intersection problem. Indeed, we intend to apply a search-based approach to solve the minimization problem. Initially, we will set \(\lambda \) to be a lower bound on the number of cubes to cover \(m \) minterms (Qian and Riedel, 2010). Then we will test whether we can find \(\lambda \) cubes so that they cover \(m \) minterms. In order to do so, we will first construct an intersection pattern such that the sum of the elements in that pattern according to Equation (1) equals the target value \(m \). Then, we need to check whether we can find \(\lambda \) cubes to satisfy that intersection pattern. If we find a solution to that instance of the \(\lambda \)-cube intersection problem, then we obtain an optimal solution to the arithmetic two-level minimization problem. If not, we will try another intersection pattern on \(\lambda \) cubes. After a number of unsuccessful trials, we will increase \(\lambda \) by one.
Example 2

Synthesize an optimal SOP Boolean expression on 4 variables to cover 11 minterms.

Since we cannot cover 11 minterms with just 1 cube, the lower bound on the number of cubes is 2. Thus, initially, we set $\lambda = 2$. For $\lambda = 2$, we first construct an intersection pattern $\{V(c_0), V(c_1), V(c_0c_1)\}$, so that

$$V(c_0) + V(c_1) - V(c_0c_1) = 11.$$

One solution of intersection pattern has elements as $V(c_0) = 8$, $V(c_1) = 4$ and $V(c_0c_1) = 1$. However, this 2-cube intersection problem has no solution. Thus, we will try other intersection patterns on 2 cubes which cover 11 minterms. Indeed, there are no intersection patterns on 2 cubes to cover 11 minterms. Then, we raise λ to 3.

For $\lambda = 3$, we first construct intersection pattern

$$\{V(c_0), V(c_1), V(c_2), V(c_0c_1), V(c_0c_2), V(c_1c_2), V(c_0c_1c_2)\},$$

so that

$$V(c_0) + V(c_1) + V(c_2) - V(c_0c_1) - V(c_0c_2) - V(c_1c_2) + V(c_0c_1c_2) = 11.$$

One solution of intersection pattern has elements as $V(c_0) = 8$, $V(c_1) = 2$, $V(c_2) = 1$ and $V(c_0c_1) = V(c_0c_2) = V(c_1c_2) = V(c_0c_1c_2) = 0$. For that 3-cube intersection problem, we could synthesize cubes $c_0 = x_0$, $c_1 = \bar{x}_0x_1x_2$ and $c_2 = \bar{x}_0\bar{x}_1\bar{x}_2x_3$ to satisfy the given intersection pattern. Thus, we get an optimal solution of 3 cubes to the original arithmetic two-level minimization problem. □

2. Preliminaries

In this section, we will first introduce some basic definitions and then give a formal definition of the λ-cube intersection problem. Some of the basic definitions are adopted from (Brayton et al., 1990).

The n variables of a Boolean function are denoted by x_0, \ldots, x_{n-1}. For a variable x, \bar{x} and \bar{x} are referred to as literals. A Boolean product, or product for short, is a conjunction of literals such that x and \bar{x} do not appear simultaneously. For example,
A Boolean product is a Boolean product. A Boolean product is also known as a cube, which is denoted by \(c \). A minterm is a cube in which each of the \(n \) variables appear exactly once, in either its complemented or uncomplemented form. If cube \(c_2 \) takes the value one whenever cube \(c_1 \) equals one, we say that cube \(c_1 \) implies cube \(c_2 \) and write as \(c_1 \subseteq c_2 \). If cube \(c_1 \) implies cube \(c_2 \), then we have \(V(c_1) \leq V(c_2) \). If \(c_1 \cdot c_2 = 0 \), we say that cube \(c_1 \) and \(c_2 \) are disjoint.

If a cube \(c \) contains \(k \) literals \((0 \leq k \leq n) \), then the number of minterms contained in the cube is \(V(c) = 2^{n-k} \). Note that when a cube contains 0 literals, it is a special cube \(c = 1 \), which contains all minterms in the entire Boolean space. There is another special cube called empty cube, which is \(c = 0 \). The number of minterms contained in an empty cube is \(V(c) = 0 \). Thus, the number of minterms contained in a cube is in the set \(S = \{ s \mid s = 0 \text{ or } s = 2^k, k = 0, 1, \ldots, n \} \).

To make the representation compact, we use the following definitions.

Definition 2
Given two integers \(A \) and \(B \), let their binary representation be \(A = \sum_{i=0}^{k-1} a_i 2^i \) and \(B = \sum_{i=0}^{k-1} b_i 2^i \), where \(a_i, b_i \in \{0, 1\} \). We write \(A \geq B \) if for all \(0 \leq i \leq k-1 \), \(a_i \geq b_i \); we write \(A \leq B \) if for all \(0 \leq i \leq k-1 \), \(a_i \leq b_i \).

Definition 3
Given a cube \(c \) and a \(\gamma \in \{0, 1\} \), define

\[
\gamma c = \begin{cases}
1, & \text{if } \gamma = 0 \\
c, & \text{if } \gamma = 1
\end{cases}
\]

Given a set of \(\lambda \) cubes \(c_0, \ldots, c_{\lambda-1} \) and an integer \(\Gamma = \sum_{i=0}^{\lambda-1} \gamma_i 2^i \), where \(\gamma_i \in \{0, 1\} \), define \(C^{\gamma} \) to be the intersection of a subset of cubes \(c_i \)’s for those \(i \)’s such that \(\gamma_i = 1 \), i.e., \(C^{\gamma} = \prod_{i=0}^{\lambda-1} c_i^{\gamma_i} \).

Definition 4
For an integer \(a \geq 0 \), define \(||a|| \) to be the number of ones in the binary representation of \(a \). More formally, suppose that \(a \) can be represented as \(a = \sum_{i=0}^{k-1} a_i 2^i \) with all \(a_i \in \{0, 1\} \). Then, \(||a|| = \sum_{i=0}^{k-1} a_i \).
For example, $\|7\| = 1 + 1 + 1 = 3$.

With the above definition, we can more formally define the λ-cube intersection problem as follows:

\[
\text{Given } n > 0, \lambda > 0, \text{ and a vector of } 2^\lambda \text{ numbers } (v_0, v_1, \ldots, v_{2^\lambda - 1}), \text{ determine whether there exists a set of } \lambda \text{ cubes } c_0, \ldots, c_{\lambda - 1} \text{ on } n \text{ variables } x_0, \ldots, x_{n-1}, \text{ such that for all } 0 \leq \Gamma \leq 2^\lambda - 1, V(C_\Gamma) = v_\Gamma.
\]

We refer to the vector of numbers $(v_0, \ldots, v_{2^\lambda - 1})$ as an intersection pattern on λ cubes, or simply as an intersection pattern. If a set of λ cubes $c_0, \ldots, c_{\lambda - 1}$ satisfies the property that for any $0 \leq \Gamma \leq 2^\lambda - 1, V(C_\Gamma) = v_\Gamma$, then we say that the set of cubes satisfies the intersection pattern $(v_0, \ldots, v_{2^\lambda - 1})$.

If there exists a set of λ cubes to satisfy the intersection pattern, then for all $0 \leq \Gamma \leq 2^\lambda - 1$, we have

\[
v_\Gamma = V(C_\Gamma) \in S = \{s|s = 0 \text{ or } s = 2^k, k = 0, 1, \ldots, n\}.
\]

Further, the number $v_0 = V(C^0) = V(1) = 2^n$. Thus, in the remaining of the paper, we will only consider the instances of the problem with $v_0 = 2^n$ and $v_1, \ldots, v_{2^\lambda - 1} \in S$. For the other instances of the problem, it is obvious that no solution exists. Since it is more meaningful to consider a set of nonempty cubes $c_0, \ldots, c_{\lambda - 1}$, we assume that for any $0 \leq i \leq \lambda - 1$, $v_2^i > 0$.

Based on the given intersection pattern, we define some sets as follows.

Definition 5

Let the set P be the set of numbers Γ such that $v_\Gamma > 0$ and let the set Z be the set of numbers Γ such that $v_\Gamma = 0$, i.e.,

\[
P = \{\Gamma|0 \leq \Gamma \leq 2^\lambda - 1 \text{ and } v_\Gamma > 0\},
\]

\[
Z = \{\Gamma|0 \leq \Gamma \leq 2^\lambda - 1 \text{ and } v_\Gamma = 0\}.
\]

For any $0 \leq i \leq \lambda$, let the set P_i be the set of numbers Γ such that the number of ones in the binary representation of Γ is i and $v_\Gamma > 0$; let the set Z_i be the set of Γ such that
the number of ones in the binary representation of \(\Gamma \) is \(i \) and \(v_\Gamma = 0 \), i.e.,
\[P_i = \{ \Gamma | 0 \leq \Gamma \leq 2^i - 1, \| \Gamma \| = i, \text{ and } v_\Gamma > 0 \}; \]
\[Z_i = \{ \Gamma | 0 \leq \Gamma \leq 2^i - 1, \| \Gamma \| = i, \text{ and } v_\Gamma = 0 \}. \]

From the definition of \(P \) and \(Z \), we have the following straightforward lemma, which gives a necessary condition on the existence of \(\lambda \) cubes to satisfy the given intersection pattern.

Lemma 1

If a set of \(\lambda \) cubes \(c_0, \ldots, c_{\lambda-1} \) satisfies the given intersection pattern, then for any \(\Gamma \in P \), \(C^\Gamma \neq 0 \) and for any \(\Gamma \in Z \), \(C^\Gamma = 0 \). □

For any \(\Gamma \in P \), we define a number \(k_\Gamma \) as follows.

Definition 6

For any \(\Gamma \in P \), define \(k_\Gamma = \log_2(v_\Gamma) \). □

Since we assume that \(v_\Gamma \in S = \{ s | s = 0 \text{ or } s = 2^k, k = 0, 1, \ldots, n \} \), thus for any \(\Gamma \in P \), \(k_\Gamma \) is an integer and \(0 \leq k_\Gamma \leq n \). Note that since \(v_0 = 2^n \), we have \(k_0 = n \).

For convenience, we represent a cube as a cube-variable row vector and a set of cubes as a cube-variable matrix. These are defined as follows.

Definition 7

Given a nonempty cube \(c \) on \(n \) variables \(x_0, \ldots, x_{n-1} \), we represent it by a cube-variable row vector \(U \) of length \(n \), whose elements are from the set \(\{ 0, 1, \ast \} \). If the \(j \)-th (\(0 \leq j \leq n-1 \)) element \(U_j = 1 \), then the literal \(x_j \) appears in the cube \(c \); if \(U_j = 0 \), then the literal \(\bar{x}_j \) appears in the cube \(c \); if \(U_j = \ast \), then the cube \(c \) does not depend on the variable \(x_j \), i.e., neither literal \(x_j \) nor literal \(\bar{x}_j \) appears in the cube \(c \).

Given a set of \(\lambda \) nonempty cubes \(c_0, \ldots, c_{\lambda-1} \) on \(n \) variables \(x_0, \ldots, x_{n-1} \), we represent them by a cube-variable matrix \(D \) of size \(\lambda \times n \), so that the \(i \)-th row of the matrix is the cube-variable row vector of \(c_i \). □

For example, a set of two cubes \(c_0 = x_0 \bar{x}_1 \) and \(c_1 = \bar{x}_0 x_2 \) is represented as a cube-variable matrix
\[
\begin{bmatrix}
1 & 0 & \ast \\
0 & \ast & 1
\end{bmatrix}
\]
Given a cube-variable row vector, the following simple lemma suggests how to obtain the number of minterms covered by the corresponding cube.

Lemma 2

*If the cube-variable row vector of a nonempty cube contains \(k \) \(* \)'s, then the cube covers \(2^k \) number of minterms.* □

Definition 8

*For a value \(a \) in \(\{0, 1, *\} \), the negation of \(a \) is defined as follows:*

\[
\bar{a} = \begin{cases}
1, & \text{if } a = 0 \\
0, & \text{if } a = 1 \\
*, & \text{if } a = *.
\end{cases}
\]

The negation of a cube-variable matrix (column vector) is the element-wise negation of the matrix (column vector). □

In what follows, we will say that a cube-variable matrix satisfies the given intersection pattern if the corresponding set of cubes satisfies the intersection pattern. The following lemma is straightforward.

Lemma 3

Suppose that a cube-variable matrix \(D \) satisfies the intersection pattern \((v_0, \ldots, v_{2^\lambda - 1}) \). Then \(D' \) satisfies the same intersection pattern if \(D' \) is obtained from \(D \) by column permutation or column negation. □

Before we go through the details of our proposed solution, we will briefly talk about the basic idea of our solution. Our solution is a column-based method: synthesizing a cube-variable matrix is equivalent to determining what each column of the matrix should be. Since each entry of the matrix is in the set \(\{0, 1, *\} \), each column, which has \(\lambda \) entries, has a total of \(3^\lambda \) choices. Indeed, by the symmetry between different column choices and the disjoint relation among some cubes, we only need to consider a small subset of all \(3^\lambda \) column choices as the candidate choices. Furthermore, by Lemma 3, since the order of the column does not matter, we only need to determine the number of occurrences of each candidate column choice in the cube-variable matrix, which we
treat as unknowns. We establish a system of equations over those unknowns and the
given intersection pattern. The λ-cube intersection problem can be solved by finding a
non-negative solution to the system of equations.

3. A Special Case of the λ-Cube Intersection Problem

Here we consider a specific case in which $v_{2^{\lambda-1}} > 0$. First, we have the following
theorem, which gives a necessary condition for the existence of a cube-variable matrix
to satisfy the given intersection pattern.

Theorem 1

If $v_{2^{\lambda-1}} > 0$ and there exists a cube-variable matrix to satisfy the λ-cube intersection
problem, then for any $0 \leq \Gamma \leq 2^\lambda - 1$, $\Gamma \in P$. □

Proof: Based on Definition 3, for any $0 \leq \Gamma \leq 2^\lambda - 1$, we have $C^{2^\lambda-1} \subseteq C^\Gamma$. Therefore,

$$0 < v_{2^{\lambda-1}} = V(C^{2^\lambda-1}) \leq V(C^\Gamma) = v_\Gamma.$$

By the definition of the set P, we have $\Gamma \in P$. □

In what follows, we will assume that there exists a cube-variable matrix D to satisfy
the given intersection pattern. Without loss of generality, we can assume that each entry
of the cube-variable matrix is either 1 or *. Since $\prod_{i=0}^{\lambda-1} c_i \neq 0$, no column of the matrix
D simultaneously contains both a 0 and a 1. Otherwise, $\prod_{i=0}^{\lambda-1} c_i = 0$. Therefore,
each column of the matrix D contains either only 0’s and *’s or only 1’s and *’s. By
Lemma 3, if we negate those columns of the matrix D that contain only 0’s and *’s,
then we obtain a new matrix D' which still satisfies the given intersection pattern. Note
that the matrix D' only contains 1’s and *’s. Thus, we could assume that each column
of the cube-variable matrix is in the set $\{1, *\}$. The set $\{1, *\}$ contains 2^λ elements.

We denote those elements by $\psi_0, \psi_1, \ldots, \psi_{2^\lambda-1}$ as follows:

Definition 9

Given any $0 \leq \Gamma \leq 2^\lambda - 1$, suppose that $\Gamma = \sum_{i=0}^{\lambda-1} \gamma_i 2^i$, where $\gamma_i \in \{0, 1\}$. Define ψ_Γ to be a column vector of length λ with entries from the set $\{1, *\}$, such that the i-th element
(0 \leq i \leq \lambda - 1) \) of it is

\[
(p_i) = \begin{cases}
1, & \text{if } \gamma_i = 0 \\
*, & \text{if } \gamma_i = 1.
\end{cases}
\]

Define the set \(\Psi = \{\psi_0, \psi_1, \ldots, \psi_{2^\lambda-1}\} \).

For example, if \(\lambda = 3 \), then \(\psi_0 = (1, 1, 1)^T \) and \(\psi_5 = (*, 1, *)^T \).

The basic idea of our proposed solution is to determine which column patterns from the set \(\Psi \) should be present in the cube-variable matrix. Indeed, as pointed out at the end of Section 2, we only need to determine how many column patterns of the form \(\psi_{\Gamma} \) are present in the matrix. We define the number of occurrences of column pattern \(\psi_{\Gamma} \) as \(z_{\Gamma} \).

Definition 10

For any \(0 \leq \Gamma \leq 2^\lambda - 1 \), define \(J_{\Gamma} \) to be the set of indices of the columns in the matrix \(D \) of the form \(\psi_{\Gamma} \), i.e., \(J_{\Gamma} = \{j | D_j = \psi_{\Gamma}\} \). Define \(z_{\Gamma} \) to be the cardinality of the set \(J_{\Gamma} \).

In the special case, if there exists a cube-variable matrix to satisfy the intersection pattern, then based on Theorem 1, we have \(P = \{0, 1, \ldots, 2^\lambda - 1\} \). Thus, based on Definition 6, we have a set of numbers \(k_0, \ldots, k_{2^\lambda-1} \). The following theorem gives relation between \(\{z_0, \ldots, z_{2^\lambda-1}\} \) and \(\{k_0, \ldots, k_{2^\lambda-1}\} \).

Theorem 2

If there exists a cube-variable matrix \(D \) to satisfy the intersection pattern, then for all \(0 \leq L \leq 2^\lambda - 1 \), we have

\[
k_L = \sum_{0 \leq \Gamma \leq 2^\lambda - 1, \Gamma \geq L} z_{\Gamma}.
\]

\[\text{(2)} \]

Proof: Since the total number of columns in matrix \(D \) is \(n \), we have \(\sum_{\Gamma=0}^{2^\lambda-1} z_{\Gamma} = n = k_0 \), or

\[
\sum_{0 \leq \Gamma \leq 2^\lambda - 1, \Gamma \geq 0} z_{\Gamma} = k_0.
\]

\[\text{11} \]

\[\text{1} \text{The superscript } T \text{ here means the transpose of a matrix.} \]
Thus, Equation (2) holds for $L = 0$.

Now consider $1 \leq L \leq 2^\lambda - 1$. Then L can be represented as $L = \sum_{j=0}^{r-1} 2^j$, where $1 \leq r \leq \lambda$ and $0 \leq l_0 < \cdots < l_{r-1} \leq \lambda - 1$. Then, C^L represents the intersection of the set of cubes $c_{l_0}, \ldots, c_{l_{r-1}}$. The i-th entry in the cube-variable row vector of the intersection C^L is \ast if and only if the column D_i has \ast’s on the row $l_0, l_1, \ldots, l_{r-1}$. Therefore, on the one hand, the number of \ast’s in the cube-variable row vector of the intersection C^L is k_L. Therefore, we have

$$k_L = \sum_{0 \leq \Gamma \leq 2^\lambda - 1: \Gamma \geq L} z_\Gamma.$$ \hfill (3)

By Definition 2, we can rewrite Equation (3) as

$$k_L = \sum_{0 \leq \Gamma \leq 2^\lambda - 1: \Gamma \geq L} z_\Gamma. \quad \square$$

Note that Equation (2) is a linear equation on $z_0, \ldots, z_{2^\lambda - 1}$ and holds for all $0 \leq L \leq 2^\lambda - 1$. Therefore, we can derive a system of 2^λ linear equations on unknowns $z_0, \ldots, z_{2^\lambda - 1}$:

$$\sum_{0 \leq \Gamma \leq 2^\lambda - 1: \Gamma \geq L} z_\Gamma = k_L, \text{ for } L = 0, 1, \ldots, 2^\lambda - 1. \quad (4)$$

We can represent the above system of linear equations in matrix form, as shown by the following theorem.

Theorem 3

Let vector $\vec{k} = (k_0, \ldots, k_{2^\lambda - 1})^T$ and vector $\vec{z} = (z_0, \ldots, z_{2^\lambda - 1})^T$. Then we can represent the system of 2^λ linear equations (4) in matrix form as

$$R_L \vec{z} = \vec{k}, \quad (5)$$
where \(R_\lambda \) is a \(2^\lambda \times 2^\lambda \) square matrix defined recursively as follows:

\[
R_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad R_i = \begin{bmatrix} R_{i-1} & R_{i-1} \\ 0 & R_{i-1} \end{bmatrix}, \text{ for } i = 2, \ldots, \lambda.
\]

Proof: For convenience, we use \(\bar{z}[j, k] \) \((0 \leq j \leq k \leq 2^\lambda - 1)\) to represent the column vector \((z_j, \ldots, z_k)^T\).

We claim that given any \(1 \leq i \leq \lambda\), the set of \(2^i\) linear expressions

\[
\sum_{0 \leq \Gamma \leq 2^i-1: \Gamma \geq L} z_\Gamma, \text{ for } L = 0, 1, \ldots, 2^i - 1
\]

can be represented in matrix form as \(R_i \bar{z}[0, 2^i - 1] \).

We prove this claim by induction on \(i\).

Base case: When \(i = 1\), the set of 2 linear expressions

\[
\begin{cases}
\sum_{0 \leq \Gamma \leq 1: \Gamma \geq 0} z_\Gamma \\
\sum_{0 \leq \Gamma \leq 1: \Gamma \geq 1} z_\Gamma
\end{cases}
\]

is

\[
\begin{bmatrix} z_0 + z_1 \\ z_1 \end{bmatrix}
\]

Therefore, in the matrix form, the set of expressions can be represented as \(R_1 \bar{z}[0, 1] \).

Inductive step: Assume that the claim holds for \(i\). Now consider the set of \(2^{i+1}\) linear expressions

\[
\sum_{0 \leq \Gamma \leq 2^{i+1}-1: \Gamma \geq L} z_\Gamma, \text{ for } L = 0, 1, \ldots, 2^{i+1} - 1.
\]

For any \(0 \leq L \leq 2^{i+1} - 1\), we have

\[
\sum_{0 \leq \Gamma \leq 2^{i+1}-1: \Gamma \geq L} z_\Gamma = \sum_{0 \leq \Gamma \leq 2^i-1: \Gamma \geq L} z_\Gamma + \sum_{2^i \leq \Gamma \leq 2^{i+1}-1: \Gamma \geq L} z_\Gamma = \sum_{0 \leq \Gamma \leq 2^i-1: \Gamma \geq L} z_\Gamma + \sum_{0 \leq \Gamma \leq 2^i-1: \Gamma+2^i \geq L} z_{\Gamma+2^i}.
\]

(6)
When $0 \leq L \leq 2^i - 1$, it is not hard to see that

$$\{\Gamma | 0 \leq \Gamma \leq 2^i - 1, (\Gamma + 2^j) \geq L\} = \{\Gamma | 0 \leq \Gamma \leq 2^i - 1, \Gamma \geq L\}.$$

Thus, from Equation (6), for any $0 \leq L \leq 2^i - 1$, we have

$$\sum_{0 \leq \Gamma \leq 2^i - 1, \Gamma \geq L} z_{\Gamma} = \sum_{0 \leq \Gamma \leq 2^i - 1, \Gamma \geq L} z_{\Gamma} + \sum_{0 \leq \Gamma \leq 2^i - 1, \Gamma \geq L} z_{\Gamma + 2^i}.$$

By the induction hypothesis, the first 2^i expressions

$$\sum_{0 \leq \Gamma \leq 2^i - 1, \Gamma \geq L} z_{\Gamma}, \text{ for } L = 0, \ldots, 2^i - 1$$

can be represented in matrix form as

$$R_i \vec{z}[0, 2^i - 1] + R_i \vec{z}[2^i, 2^i + 1 - 1]. \quad (7)$$

When $2^i \leq L \leq 2^i + 1 - 1$, it is not hard to see that

$$\{\Gamma | 0 \leq \Gamma \leq 2^i - 1, \Gamma \geq L\} = \phi,$$

$$\{\Gamma | 0 \leq \Gamma \leq 2^i - 1, (\Gamma + 2^j) \geq L\}
\quad = \{\Gamma | 0 \leq \Gamma \leq 2^i - 1, \Gamma \geq (L - 2^i)\}.$$

Therefore, from Equation (6), for any $2^i \leq L \leq 2^i + 1 - 1$, we have

$$\sum_{0 \leq \Gamma \leq 2^i - 1, \Gamma \geq L} z_{\Gamma} = \sum_{0 \leq \Gamma \leq 2^i - 1, \Gamma \geq (L - 2^i)} z_{\Gamma + 2^i}.$$

Note that $0 \leq L - 2^i \leq 2^i - 1$. Thus, by the induction hypothesis, the last 2^i expressions

$$\sum_{0 \leq \Gamma \leq 2^i - 1, \Gamma \geq L} z_{\Gamma}, \text{ for } L = 2^i, \ldots, 2^i + 1 - 1$$

can be represented in matrix form as

$$R_i \vec{z}[2^i, 2^i + 1 - 1]. \quad (8)$$

Based on Equation (7) and (8), the set of linear expressions

$$\sum_{0 \leq \Gamma \leq 2^i - 1, \Gamma \geq L} z_{\Gamma}, \text{ for } L = 0, \ldots, 2^i + 1 - 1$$

14
can be represented in matrix form as
\[
\begin{bmatrix}
R_i & R_i \\
0 & R_i \\
\end{bmatrix}
\begin{bmatrix}
\vec{z}[0, 2^i - 1] \\
\vec{z}[2^i, 2^{i+1} - 1] \\
\end{bmatrix} = R_{i+1}\vec{z}[0, 2^{i+1} - 1].
\]

Therefore, the claim holds for \(i + 1\). Thus, by induction, the claim holds for all \(i = 1, 2, \ldots, \lambda\).

Thus, the system of linear equations
\[
\sum_{0 \leq \Gamma \leq 2^i - 1} z_\Gamma = k_L, \quad \text{for } L = 0, 1, \ldots, 2^i - 1.
\]
can be represented in matrix form as
\[
R_i \vec{z} = \vec{k}. \quad \square
\]

It is not hard to see that \(\det(R_\lambda) = 1\). Therefore, \(R_\lambda\) is invertible. The following theorem shows what \(R_\lambda^{-1}\) is.

Theorem 4

\(R_\lambda^{-1}\) is recursively defined as follows:
\[
R_1^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, R_i^{-1} = \begin{bmatrix} R_{i-1}^{-1} & -R_{i-1}^{-1} \\ 0 & R_{i-1}^{-1} \end{bmatrix}, \quad \text{for } i = 2, \ldots, \lambda. \quad \square
\]

Proof: We only need to show that for \(i = 1, \ldots, \lambda\), \(R_1^{-1}R_i = I_2\). We prove this claim by induction on \(i\).

Base case: When \(i = 1\),
\[
R_1^{-1}R_1 = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.
\]

Inductive step: Assume the claim holds for \(i\). Then, based on the induction hypothesis,
\[
R_{i+1}^{-1}R_{i+1} = \begin{bmatrix} R_i^{-1} & -R_i^{-1} \\ 0 & R_i^{-1} \end{bmatrix} \begin{bmatrix} R_i & R_i \\ 0 & R_i \end{bmatrix} = \begin{bmatrix} I_2 & 0 \\ 0 & I_2 \end{bmatrix} = I_{2^{i+1}}.
\]
Therefore, the claim holds for \(i + 1 \). Thus, by induction, the claim holds for all \(i = 1, \ldots, \lambda \). □

Therefore, given \(k_0, k_1, \ldots, k_{2^{\lambda-1}} \), we can get \(z_0, z_1, \ldots, z_{2^{\lambda-1}} \) as \(\vec{z} = R_{\lambda}^{-1} \vec{k} \).

Since for any \(0 \leq \Gamma \leq 2^\lambda - 1 \), \(z_\Gamma \) is the cardinality of the set \(J_\Gamma \), therefore, \(z_\Gamma \) must be a non-negative integer. By Theorem 4, \(R_{\lambda}^{-1} \) is an integer matrix. Therefore, \(z_0, \ldots, z_{2^\lambda-1} \) are always integers. Thus, a necessary condition for the existence of \(\lambda \) cubes to satisfy the given intersection pattern is that the vector \(R_{\lambda}^{-1} \vec{k} \) has all entries non-negative. On the other hand, from Equation (5), we can see that the intersection pattern \((2^{k_0}, \ldots, 2^{k_{2^{\lambda-1}}}) \) only depends on \(z_0, \ldots, z_{2^{\lambda-1}} \). Therefore, as long as the vector \(R_{\lambda}^{-1} \vec{k} \) has all entries non-negative, there exist \(\lambda \) cubes to satisfy the given intersection pattern. In fact, we can construct \(\lambda \) cubes with their cube-variable matrix as follows: for any column \(0 \leq j \leq n - 1 \) of \(D \), we can find a \(0 \leq \Gamma \leq 2^\lambda - 1 \) such that \(\sum_{i=0}^{\Gamma-1} z_i \leq j \leq \sum_{i=0}^\Gamma z_i - 1 \). Then, we let \(D_j = \psi_\Gamma \). In summary, we have the following corollary.

Corollary 1

The necessary and sufficient condition for the existence of \(\lambda \) cubes to satisfy the given intersection pattern is that the vector \(R_{\lambda}^{-1} \vec{k} \) has all entries non-negative, where \(\vec{k} = (k_0, k_1, \ldots, k_{2^{\lambda-1}})^T \) and \(R_{\lambda}^{-1} \) is defined in Theorem 4. □

Example 3

Given \(v_0 = 32, v_1 = 16, v_2 = 16, v_3 = 8, v_4 = 8, v_5 = 4, v_6 = 4, \) and \(v_7 = 2 \), determine whether there exists a set of three cubes \(c_0, c_1, \) and \(c_2 \) on 5 variables that satisfies the intersection pattern \((v_0, \ldots, v_7) \).

Solution: From the given coditions, we have

\[\vec{k} = (5, 4, 4, 3, 2, 2, 1)^T. \]
Since
\[
R_{3}^{-1} = \begin{bmatrix}
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\
0 & 1 & 0 & -1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix},
\]
then by Equation (5), we get
\[
\vec{z} = (0, 0, 0, 2, 0, 1, 1, 1)^T.
\]

Therefore, there are two \(\psi_5\)'s, one \(\psi_6\), and one \(\psi_7\) in the cube-variable matrix of \(c_0, c_1,\) and \(c_2\). One realization of the cube-variable matrix is
\[
\begin{bmatrix}
* & * & * & 1 & * \\
* & * & 1 & * & * \\
1 & 1 & * & * & * \\
\end{bmatrix}
\]
and the corresponding cubes are \(c_0 = x_3, c_1 = x_2,\) and \(c_2 = x_0 \land x_1.\)

4. General \(\lambda\)-Cube Intersection Problem

In this section, we consider the more general situation where \(v_{2^\lambda - 1} \geq 0.\)

4.1. Necessary Conditions on the Positive \(v_\Gamma\)’s

We first have the following theorem applicable for numbers \(v_\Gamma > 0.\)

Theorem 5

Suppose that there exist \(\lambda\) cubes \(c_0, \ldots, c_{\lambda-1}\) to satisfy the intersection pattern. For any
\(0 \leq L \leq 2^\lambda - 1,\) if \(v_L > 0,\) then for any \(0 \leq \Gamma \leq 2^\lambda - 1\) such that \(\Gamma \leq L,\) we have \(v_\Gamma > 0.\)
Proof: For any $0 \leq \Gamma \leq 2^d - 1$ such that $\Gamma \leq L$, it is not hard to see that $C^L \subseteq C^\Gamma$. Therefore, $0 < v_L = V(C^L) \leq V(C^\Gamma) = v_\Gamma$. \square

If a set of cubes is pairwise non-disjoint, then it has the following property.

Lemma 4

If a set of r cubes $c_{l_0}, \ldots, c_{l_{r-1}}$ $(3 \leq r \leq \lambda, 0 \leq l_0 < \cdots < l_{r-1} \leq \lambda - 1)$ is pairwise non-disjoint, i.e., for any $0 \leq i < j \leq r - 1$, $c_i \cdot c_j \neq 0$, then their intersection $\prod_{i=0}^{r-1} c_{l_i}$ is nonempty. \square

Proof: By contraposition, suppose that $\prod_{i=0}^{r-1} c_{l_i} = 0$. Consider the cube-variable matrix on these r cubes. Since their intersection is empty, there exists a column in the matrix that contains both a 0 and a 1. The cube corresponding to the 0 entry and the cube corresponding to the 1 entry are disjoint. This contradicts the assumption that the given set of cubes is pairwise non-disjoint. \square

Alternatively, Lemma 4 can be stated on the numbers v_Γ. This gives a necessary condition for the existence of a set of cubes to satisfy the given intersection pattern.

Theorem 6

Suppose that there exist λ cubes $c_0, \ldots, c_{\lambda-1}$ to satisfy the given intersection pattern.

If a set of r $(3 \leq r \leq \lambda)$ numbers $0 \leq l_0 < \cdots < l_{r-1} \leq \lambda - 1$ satisfies that for any $0 \leq i < j \leq r - 1$, $v_{(2^i+2^j)} > 0$, then for $L = \sum_{i=0}^{r-1} 2^l$, $v_L > 0$. \square

For example, suppose that in a 4-cube intersection problem we are given $v_3 > 0$, $v_9 > 0$, and $v_{10} > 0$. If there exist 4 cubes to satisfy the given intersection pattern, then since $V(c_0c_1) > 0$, $V(c_0c_3) > 0$, and $V(c_1c_3) > 0$, we must have $v_{11} = V(c_0c_1c_3) > 0$.

If both the conditions in Theorem 5 and 6 are satisfied, then we have the following theorem, which will play an important role in proving the necessary and sufficient condition later.

Theorem 7

Suppose that the given intersection pattern satisfies that

1. For any $0 \leq L \leq 2^d - 1$, if $v_L > 0$, then for any $0 \leq \Gamma \leq 2^d - 1$ such that $\Gamma \leq L$, $v_\Gamma > 0$.

18
2. For any set of \(r (3 \leq r \leq \lambda) \) numbers \(0 \leq l_0 < \cdots < l_{r-1} \leq \lambda - 1 \), if it satisfies that for any \(0 \leq i < j \leq r - 1, v_{(2^{l_i} + 2^{l_j})} > 0 \), then for the number \(L = \sum_{i=0}^{r-1} 2^{l_i}, v_L > 0 \).

Then, a necessary and sufficient condition for a set of \(\lambda \) nonempty cubes to satisfy the condition that for any \(\Gamma \in P, C^\Gamma \neq 0 \) and for any \(\Gamma \in Z, C^\Gamma = 0 \) is that for any \(\Gamma \in P_2, C^\Gamma \neq 0 \) and for any \(\Gamma \in Z_2, C^\Gamma = 0 \). □

Proof: The necessary part of the theorem is obvious, since the set \(P_2 \) is a subset of the set \(P \) and the set \(Z_2 \) is a subset of the set \(Z \).

Now we prove the sufficient part. Suppose that a set of cubes satisfies that for any \(\Gamma \in P_2, C^\Gamma \neq 0 \) and for any \(\Gamma \in Z_2, C^\Gamma = 0 \).

It is not hard to see that the sets \(P_0, \ldots, P_\lambda \) form a partition of the set \(P \) and that the sets \(Z_0, \ldots, Z_\lambda \) form a partition of the set \(Z \). Thus, we only need to prove that for all \(0 \leq k \leq \lambda \), the set of cubes satisfies the condition that for any \(\Gamma \in P_k, C^\Gamma \neq 0 \) and for any \(\Gamma \in Z_k, C^\Gamma = 0 \).

We first consider the case that \(k = 0 \). By convention, \(v_0 > 0 \). Thus, \(P_0 = \{0\} \) and \(Z_0 = \phi \). Since \(C^0 = 1 \), thus we have that for any \(\Gamma \in P_0, C^\Gamma \neq 0 \). Since \(Z_0 = \phi \), the statement that for any \(\Gamma \in Z_0, C^\Gamma = 0 \) also holds.

Now we consider the case that \(k = 1 \). Since we assume that for any \(0 \leq i \leq \lambda - 1, v_i > 0 \), therefore, \(P_1 = \{2^{|j = 0, \ldots, \lambda - 1\}} \) and \(Z_1 = \phi \). Since \(c_0, \ldots, c_{\lambda - 1} \) are all nonempty, thus we have that for any \(\Gamma \in P_1, C^\Gamma \neq 0 \). Since \(Z_1 = \phi \), the statement that for any \(\Gamma \in Z_1, C^\Gamma = 0 \) also holds.

When \(k = 2 \), the statement that the set of cubes satisfies that for any \(\Gamma \in P_2, C^\Gamma \neq 0 \) and for any \(\Gamma \in Z_2, C^\Gamma = 0 \) obviously holds.

Now we consider the case that \(k \geq 3 \). First, we consider any \(L \in P_k \). Suppose that \(L = \sum_{i=0}^{k-1} 2^{l_i} \), where \(3 \leq r \leq \lambda \) and \(0 \leq l_0 < \cdots < l_{r-1} \leq \lambda - 1 \). Then, for any \(0 \leq i < j \leq r - 1, (2^{l_i} + 2^{l_j}) \leq L \). Therefore, based on the given condition, we have \(v_{(2^{l_i} + 2^{l_j})} > 0 \). Since \(||2^{l_i} + 2^{l_j}|| = 2 \), thus \((2^{l_i} + 2^{l_j}) \in P_2 \). By the assumption that for any \(\Gamma \in P_2, C^\Gamma \neq 0 \), we have that \(C^{(2^{l_i} + 2^{l_j})} = c_{l_i} \cdot c_{l_j} \neq 0 \). Thus, the \(r \) cubes \(c_{l_0}, \ldots, c_{l_{r-1}} \) are pairwise non-disjoint. By Lemma 4, then \(C^L = \prod_{i=0}^{r-1} c_{l_i} \neq 0 \). Therefore, for any \(L \in P_k, C^L \neq 0 \).
Now we consider any $L \in Z_k$. Suppose that $L = \sum_{i=0}^{r-1} 2^i$, where $3 \leq r \leq \lambda$ and $0 \leq l_0 < \cdots < l_{r-1} \leq \lambda - 1$. We argue that there exist two numbers $0 \leq u < v \leq r - 1$, such that $v_{(2^u + 2^v)} = 0$. Otherwise, for any $0 \leq i < j \leq r - 1$, $v_{(2^i + 2^j)} > 0$. Then, based on the given conditions, we have $v_L > 0$. This contradicts the assumption that $L \in Z_k$. Thus, there exist two numbers $0 \leq u < v \leq r - 1$, such that $v_{(2^u + 2^v)} = 0$. Since $\|2^u + 2^v\| = 2$, thus $(2^u + 2^v) \in Z_2$. By the assumption that for any $\Gamma \in Z_2$, $C^\Gamma = 0$, we have that $C^{(2^u + 2^v)} = c_u \cdot c_v = 0$. Thus, $C^L = \prod_{i=0}^{r-1} c_i = 0$. Therefore, for any $L \in Z_k$, $C^L = 0$. □

4.2. Compatible Column Pattern Set

In the general case, the cube-variable matrix consists of 0, 1 and \ast and so does each column of the matrix. There are a total of 3^λ different choices of patterns for each column. However, not all combinations of 0, 1 and \ast as a column vector can be present in the matrix. For example, if the given intersection pattern indicates that $c_i \cdot c_j \neq 0$, then those column patterns that have a 0 on the i-th entry and a 1 on the j-th entry cannot be present in the matrix. On the other hand, some kinds of column patterns must be present at least once in the matrix. For example, if the given intersection pattern indicates that $c_i \cdot c_j = 0$, then at least one of the column patterns that have a 0 on the i-th entry and a 1 on the j-th entry or have a 1 on the i-th entry and a 0 on the j-th entry must be present in the matrix. In this section, we will show what kind of column patterns can be present in the matrix. For this purpose, we first introduce the compatible column pattern set for numbers $\Gamma \in Z_2$.

Definition 11

Suppose that $\Gamma \in Z_2$ and $\Gamma = 2^i + 2^j$, where $0 \leq i < j \leq \lambda - 1$. The compatible column pattern set for Γ is the set of column vectors W of length λ with entries from the set $\{0, 1, \ast\}$, such that

1. $W_i = 0$ and $W_j = 1$ or $W_i = 1$ and $W_j = 0$.
2. for any number $L \in P_2$ such that $L = 2^k + 2^l$, where $0 \leq k < l \leq \lambda - 1$, the situation that $W_k = 0$ and $W_l = 1$ or $W_k = 1$ and $W_l = 0$ does not happen. □
It is not hard to see that if a cube-variable column vector is in the compatible column pattern set for a \(\Gamma \in \mathbb{Z}_2 \), then the negation of that cube-variable column vector is also in that set. Therefore, we define the \textit{representative compatible column pattern set} as follows.

Definition 12

The representative compatible column pattern set \(\rho_\Gamma \) for \(\Gamma \in \mathbb{Z}_2 \) is a subset of the compatible column pattern set for \(\Gamma \) such that the first non-\(\ast \) entry of each element in the representative set is 0. □

Example 4

Consider a 4-cube intersection problem with

\[
P_2 = \{ (0011)_2, (0101)_2, (1001)_2 \}, \\
Z_2 = \{ (0110)_2, (1010)_2, (1100)_2 \}.
\]

The compatible column pattern set for \(\Gamma = (0110)_2 \in \mathbb{Z}_2 \) is

\[
\{ (\ast010)^T, (\ast101)^T, (\ast011)^T, (\ast100)^T, (\ast01\ast)^T, (\ast10\ast)^T \}.
\]

The representative compatible column pattern set for
\(\Gamma = (0110)_2 \) is \(\{ (\ast010)^T, (\ast011)^T, (\ast01\ast)^T \} \). □

Definition 13

We define the set \(Y \) as the union of the representative compatible column pattern sets \(\rho_\Gamma \) for all \(\Gamma \in \mathbb{Z}_2 \), i.e., \(Y = \bigcup_{\Gamma \in \mathbb{Z}_2} \rho_\Gamma \). We define the set \(F = Y \cup \Psi \). □

The following lemma shows that only those column patterns in the set \(F \) are needed to construct the cube-variable matrix.

Lemma 5

If there exists a cube-variable matrix \(D \) to satisfy the given intersection pattern, then there exists another matrix \(D' \) which also satisfies the given intersection pattern and each column of which is in the set \(F \). □

Proof: First, we argue that for any column of \(D \) which contains both a 0 and a 1 entry, the column is in the compatible column pattern set of a certain \(\Gamma \in \mathbb{Z}_2 \).
Suppose that a column \(r\) \((0 \leq r \leq n - 1)\) of \(D\) has the \(i\)-th entry being 0 and the \(j\)-th entry being 1, where \(0 \leq i, j \leq \lambda - 1\) and \(i \neq j\). Then, \(c_i \cdot c_j = 0\). Since the matrix \(D\) satisfies the given intersection pattern, we have \(v_{2^i + 2^j} = V(c_i \cdot c_j) = 0\). Therefore, the number \(2^i + 2^j\) is in the set \(Z_2\). Now consider any \(L \in P_2\). Suppose that \(L = 2^k + 2^l\), where \(0 \leq k < l \leq \lambda - 1\). Since the necessary condition for the cube-variable matrix to satisfy a given intersection pattern is that for \(L \in P_2\), \(C_L, 0\), thus the situation that \(D_{kr} = 0\) and \(D_{lr} = 1\) or \(D_{kr} = 1\) and \(D_{lr} = 0\) cannot happen. Therefore, the column \(r\) of \(D\) is in the compatible column pattern set for the number \((2^i + 2^j) \in Z_2\).

We can construct a \(D'\) from \(D\) as follows. For any column \(0 \leq r \leq \lambda - 1\):

1. If \(D_r\) contains only 1’s and *’s, we let \(D'_r\) be \(D_r\). Then \(D'_r\) is in the set \(\Psi\).
2. If \(D_r\) contains only 0’s and *’s, we let \(D'_r\) be the negation of the column \(D_r\). Then \(D'_r\) is in the set \(\Psi\).
3. If \(D_r\) contains both a 0 and a 1 and the first non-* entry of \(D_r\) is 0, we let \(D'_r\) be \(D_r\). Then, there exists a \(\Gamma \in Z_2\) such that \(D'_r\) is in the set \(\rho\).
4. If \(D_r\) contains both a 0 and a 1 and the first non-* entry of \(D_r\) is 1, we let \(D'_r\) be the negation of the column \(D_r\). Then, there exists a \(\Gamma \in Z_2\) such that \(D'_r\) is in the set \(\rho\).

Then, by the above construction, each column of \(D'\) is in the set \(F\). Further, \(D'\) is obtained from \(D\) by column negations. Thus, by Lemma 3, \(D'\) also satisfies the given intersection pattern. □

Based on Lemma 5, we only need to answer whether there exists a cube-variable matrix with columns from the set \(F\) to satisfy the given intersection pattern. The following lemma states that if such a matrix exists, then for each \(\Gamma \in Z_2\), at least one of the column pattern elements from the set \(\rho\) must be present in that matrix.

Lemma 6

If a cube-variable matrix \(D\) with columns from the set \(F\) satisfies the given intersection pattern, then for any \(\Gamma \in Z_2\), there exists a column in \(D\) which is in the set \(\rho\). □

Proof: For any \(\Gamma \in Z_2\), suppose that \(\Gamma = 2^i + 2^j\), where \(0 \leq i < j \leq \lambda - 1\). Since the cube-variable matrix satisfies the given intersection pattern, then based on Lemma 1,
for the $\Gamma \in Z_2$, we must have $C^\Gamma = 0$ or $c_i \cdot c_j = 0$. Thus, there exist a column r in D, such that $D_{ir} = 0$ and $D_{jr} = 1$ or $D_{ir} = 1$ and $D_{jr} = 0$. Now consider any $L \in P_2$.

Suppose that $L = 2^k + 2^l$, where $0 \leq k < l \leq \lambda - 1$. Since the necessary condition for the cube-variable matrix to satisfy a given intersection pattern is that for the $L \in P_2$, $C^L \neq 0$, the situation that $D_{kr} = 0$ and $D_{lr} = 1$ or $D_{kr} = 1$ and $D_{lr} = 0$ cannot happen. Therefore, the column r of D is in the compatible column pattern set for Γ. Further, since all the columns of D are in the set F, then column r must be in the set ρ_r. □

4.3. A Necessary and Sufficient Condition

In this section, we will show a necessary and sufficient condition for the existence of a set of cubes to satisfy the given intersection pattern. As a byproduct, the proof provides a way of synthesizing a set of cubes to satisfy the given intersection pattern. Based on Lemma 5, we only need to consider cube-variable matrix that consists of column patterns from the set F. The basic idea to solve the general case problem is similar to that applied in the special case — we will establish relations between the numbers of occurrences of those elements of the set F in the cube-variable matrix and the k_Γ’s. First, we define root cube-variable matrix, which links the general case problem to the special case problem we discussed in Section 3.

Definition 14

Given a cube-variable matrix D on λ cubes $c_0, \ldots, c_{\lambda - 1}$, we define root cube-variable matrix $\iota(D)$ of D as the cube-variable matrix formed by replacing the 0 entries in D with 1’s and keeping the other entries in D unchanged. The set of cubes $c'_0, \ldots, c'_{\lambda - 1}$ corresponding to the root matrix is called the set of root cubes to the original set of cubes. □

For example, the root matrix of the cube-variable matrix

$$
\begin{bmatrix}
1 & 0 & * \\
0 & * & 1
\end{bmatrix}
$$

is

$$
\begin{bmatrix}
1 & 1 & * \\
1 & * & 1
\end{bmatrix}.
$$

The set of root cubes is $c'_0 = x_0x_1$ and $c'_1 = x_0x_2$.

Based on the definition of the set of root cubes, we have the following lemma.

23
Lemma 7

Suppose that the set of root cubes to the set of original cubes $c_0, \ldots, c_{\lambda-1}$ is $c'_0, \ldots, c'_{\lambda-1}$. Then, for any $\Gamma \in P$, we have $V(C^\Gamma) = V(C'^\Gamma)$. □

Proof: If $\Gamma = 0$, then obviously, $V(C'^0) = 2^n = V(C^0)$. Now consider any $\Gamma \in P$ such that $\Gamma \neq 0$. Suppose that C^Γ represents the intersection of a set of cubes $c_{l_0}, \ldots, c_{l_{\lambda-1}}$, where $1 \leq r \leq \lambda$ and $0 \leq l_0 < \cdots < l_{\lambda-1} \leq \lambda - 1$. Let the cube-variable matrix corresponding to the set of cubes $c_{l_0}, \ldots, c_{l_{\lambda-1}}$ be D_Γ and the cube-variable matrix corresponding to the set of cubes $c'_{l_0}, \ldots, c'_{l_{\lambda-1}}$ be D'_{Γ}. Since $V(C^\Gamma) > 0$, the intersection of $c_{l_0}, \ldots, c_{l_{\lambda-1}}$ is nonempty. Based on the definition of the set of root cubes, each column of the matrix D'_{Γ} contains only 1’s and ∗’s. Therefore, the intersection of $c'_{l_0}, \ldots, c'_{l_{\lambda-1}}$ is also nonempty. Since D'_{Γ} is the root matrix of D_{Γ}, the columns of D'_{Γ} that contain all ∗’s are in one-to-one correspondence to the columns of D_{Γ} that contain all ∗’s. Since the number of ∗’s in the cube-variable row vector of the nonempty intersection of a set of cubes equals the number of columns of the matrix that contain all ∗’s, the number of ∗’s in the cube-variable row vector of C'^Γ equals that in the cube-variable row vector of C^Γ. By Lemma 2, we have $V(C'^\Gamma) = V(C^\Gamma)$. □

Since the root matrix $t(D)$ is a matrix containing only 1’s and ∗’s, we can apply the definition of z_{Γ} in Definition 10 to $t(D)$. Then, based on the fact that for any $\Gamma \in P$, $V(C'^\Gamma) = V(C^\Gamma) = 2^{\xi}$, it is not hard to show that the following theorem characterizing the relation between z_{Γ}’s and k_L’s holds.

Theorem 8

*If there exist λ cubes to satisfy the given intersection pattern, then for any $L \in P$,

$$
\sum_{0 \leq \Gamma \leq 2^{L-1}} z_{\Gamma} = k_L, \text{ where } z_{\Gamma} \text{’s are defined on the root matrix } t(D) \text{ according to Definition 10}. \ □
$$

Following a similar definition for a root cube-variable matrix, we define a root column vector as follows.

Definition 15

*Given a column vector W with each element in the set $\{0, 1, ∗\}$, define its root column vector $t(W)$ as the column vector obtained from W by replacing the 0 entries in W with
1’s and keeping the other entries in W unchanged. □

Based on the definition of the root column vector, we can regroup the elements in the set Y according to their root column vectors, which results in the following definition. The relation between the elements in the set Y and their root column vectors will be used later to derive a set of inequalities on the numbers of occurrences of the elements of the set F in the cube-variable matrix (See Theorem 9).

Definition 16

We define the set M to be the set of numbers $0 \leq \Gamma \leq 2^1 - 1$ such that there exists an element in the set Y, whose root column vector is ψ_{Γ}, i.e.,

$$M = \{ \Gamma | 0 \leq \Gamma \leq 2^1 - 1, \ s.t. \ \exists W \in Y \ s.t. \ t(W) = \psi_{\Gamma} \}.$$

Define \overline{M} as $\overline{M} = \{ \Gamma | 0 \leq \Gamma \leq 2^1 - 1, \Gamma \notin M \}$.

For any $\Gamma \in M$, we define the set Y_{Γ} to be the set of elements in the set Y such that their root column vectors are ψ_{Γ}, i.e., $Y_{\Gamma} = \{ W | W \in Y \ and \ t(W) = \psi_{\Gamma} \}$. □

Notice that the sets Y_{Γ} ($\Gamma \in M$) form a partition of the set Y.

Example 5

For the intersection pattern shown in Example 4, we have $Z_2 = \{6, 10, 12\}$ and

$$\rho_6 = \{(\ast 010)^T, (\ast 011)^T, (\ast 01)^T\},$$

$$\rho_{10} = \{(\ast 001)^T, (\ast 011)^T, (\ast 0 \ast 1)^T\},$$

$$\rho_{12} = \{(\ast 010)^T, (\ast 001)^T, (\ast \ast 01)^T\}.$$

Thus,

$$Y = \{(\ast 010)^T, (\ast 001)^T, (\ast 011)^T, (\ast 0 \ast 1)^T, (\ast 01)^T, (\ast 01)^T\},$$

$$M = \{1, 3, 5, 9\},$$

and $Y_1 = \{(\ast 010)^T, (\ast 001)^T, (\ast 011)^T\}, \ Y_3 = \{(\ast \ast 01)^T\}, \ Y_5 = \{(\ast 0 \ast 1)^T\}, \ and \ Y_9 = \{(\ast 01)^T\}$. □

Based on Lemma 5, we can assume that each column of the cube-variable matrix is from the set $F = Y \cup \Psi$. To solve the general case problem, we only need to determine
the number of occurrences of each element of the set F in the cube-variable matrix. In
order to establish equations, we first define the number of occurrences of each element
of the set Y in the cube-variable matrix, which is actually defined on each partition Y_T
of Y, as stated by the following definition.

Definition 17
For any $\Gamma \in M$, we let the $|Y_T|$ elements in the set Y_T be
$\delta_{T,0}, \ldots, \delta_{T,|Y_T|-1}$. For any $0 \leq i \leq |Y_T| - 1$, we define $K_{T,i}$ to be the set of indices of the
columns in the matrix D of the form $\delta_{T,i}$, i.e., $K_{T,i} = \{k|D_k = \delta_{T,i}\}$. We define $w_{T,i}$ to be
the cardinality of the set $K_{T,i}$. □

The following theorem establishes a set of linear inequalities on $w_{T,i}$’s and z_{i}’s,
where the z_{i}’s are defined on the root matrix according to Definition 10.

Theorem 9
Suppose that there exists a cube-variable matrix D to satisfy the given intersection
pattern, whose columns are from the set F. Then, we have that for any $\Gamma \in M$,
$$
\sum_{i=0}^{|Y_T|-1} w_{T,i} \leq z_{T},
$$
where z_{T}’s are defined on the root matrix $t(D)$ according to Definition 10. We also have
that for any $L \in Z_2$,
$$
\sum_{\delta_{T,i} \in \rho_L} w_{T,i} \geq 1.
$$
□

Proof: Consider any $\Gamma \in M$. For any number $k \in \bigcup_{i=0}^{|Y_T|-1} K_{T,i}$, the column vector D_k
is in the set Y_T. Thus, the root column vector of D_k is ψ_T. Thus, $k \in J_T$, where J_T is
defined on the root matrix $t(D)$. Therefore, $\bigcup_{i=0}^{|Y_T|-1} K_{T,i} \subseteq J_T$. As a result, $|\bigcup_{i=0}^{|Y_T|-1} K_{T,i}| \leq |J_T|$, or $\sum_{i=0}^{|Y_T|-1} w_{T,i} \leq z_T$.

By Lemma 6, for any $L \in Z_2$, there exists a column in D which is in the set ρ_L.
Suppose that column is of the form $\delta_{T',i'} \in \rho_L$, where $\Gamma' \in M$ and $0 \leq i' \leq |Y_{T'}| - 1$. Thus,
$$
1 \leq w_{T',i'} \leq \sum_{\delta_{T,i} \in \rho_L} w_{T,i}.
$$
□
Example 6
For the intersection pattern given in Example 4, based on the result shown in Example 5, we have

\[\delta_{1,0} = (\ast 010)^T, \delta_{1,1} = (\ast 001)^T, \delta_{1,2} = (\ast 011)^T, \]
\[\delta_{3,0} = (\ast \ast 01)^T, \delta_{5,0} = (\ast 0 \ast 1)^T, \delta_{9,0} = (\ast 01 \ast)^T. \]

The set of equations (9) for all \(\Gamma \in M\) in this example is
\[
\begin{cases}
w_{\Gamma,0} \leq z_{\Gamma}, \text{ for any } \Gamma \in \{3, 5, 9\} \\
w_{1,0} + w_{1,1} + w_{1,2} \leq z_1
\end{cases}
\]

The set of equations (10) for all \(L \in Z_2\) in this example is
\[
\begin{cases}
w_{1,0} + w_{1,2} + w_{9,0} \geq 1 \\
w_{1,1} + w_{1,2} + w_{5,0} \geq 1 \\
w_{1,0} + w_{1,1} + w_{3,0} \geq 1
\end{cases}
\]

Finally, combining the conditions of Theorem 5, 6, 8, and 9, we can derive the following necessary and sufficient condition.

Theorem 10
There exists a cube-variable matrix \(D\) to satisfy the given intersection pattern \((v_0, \ldots, v_{2^\lambda-1})\) if and only if

1. for any \(0 \leq L \leq 2^\lambda - 1\), if \(v_L > 0\), then for any \(0 \leq \Gamma \leq 2^\lambda - 1\) such that \(\Gamma \leq L\), \(v_{\Gamma} > 0\),
2. for any set of \(r (3 \leq r \leq \lambda)\) numbers \(0 \leq l_0 < \cdots < l_{r-1} \leq \lambda - 1\), if it satisfies that for any \(0 \leq i < j \leq r - 1\), \(v_{(2^i + 2^j)} > 0\), then for the number \(L = \sum_{i=0}^{r-1} 2^i, v_L > 0\),
3. the system of equations on unknowns \(\tilde{z}_{\Gamma}\) (for all \(0 \leq \Gamma \leq 2^\lambda - 1\)) and \(\tilde{w}_{\Gamma,j}\) (for all \(\Gamma \in M\) and \(0 \leq i \leq |Y_{\Gamma}| - 1\))
\[
\sum_{0 \leq \Gamma \leq 2^\lambda - 1; \Gamma \geq L} \tilde{z}_{\Gamma} = k_L, \text{ for all } L \in P
\]
\[
\sum_{r=0}^{|Y_{\Gamma}| - 1} \tilde{w}_{\Gamma,j} \leq \tilde{z}_{\Gamma}, \text{ for all } \Gamma \in M
\]
\[
\sum_{\Gamma \in M; 0 \leq \Gamma \leq |Y_{\Gamma}| - 1; \delta_{\Gamma} \leq \rho_L} \tilde{w}_{\Gamma,j} \geq 1, \text{ for all } L \in Z_2
\]
has a non-negative integer solution. □

Proof: “only if” part: Statement 1 in the theorem is due to Theorem 5 and Statement 2 in the theorem is due to Theorem 6.

Since D satisfies the given intersection pattern, then by Lemma 5, there exists another matrix D' which also satisfies the given intersection pattern and each column of which is in the set F. For any $0 \leq \Gamma \leq 2^k - 1$, let $\delta_{\Gamma} = z_{\Gamma}$, where z_{Γ}'s are defined on the root matrix $n(D')$ according to Definition 10. For any $\Gamma \in M$ and $0 \leq i \leq |Y_{\Gamma}| - 1$, let $\bar{w}_{\Gamma,i} = w_{\Gamma,i}$, where $w_{\Gamma,i}$'s are defined on the matrix D' according to Definition 17. By Theorem 8 and 9, the set of numbers \bar{z}_{Γ}'s and $\bar{w}_{\Gamma,i}$'s are all non-negative integers. Thus, the system of equations (11) has a non-negative solution.

“if” part: Let a non-negative solution to the system of equations (11) be $\tilde{z}_{\Gamma} = z_{\Gamma}$, for all $0 \leq \Gamma \leq 2^k - 1$, and $\bar{w}_{\Gamma,i} = w_{\Gamma,i}$, for all $\Gamma \in M$ and $0 \leq i \leq |Y_{\Gamma}| - 1$. Since for all $0 \leq \Gamma \leq 2^k - 1$, $z_{\Gamma} \geq 0$, for all $\Gamma \in M$ and $0 \leq i \leq |Y_{\Gamma}| - 1$, $w_{\Gamma,i} \geq 0$, and for all $\Gamma \in M$, $\sum_{i=0}^{|Y_{\Gamma}|} w_{\Gamma,i} \leq z_{\Gamma}$, then, we can construct a cube-variable matrix D so that

1. for all $\Gamma \in \overline{M}$, the matrix contains z_{Γ} columns of the form ψ_{Γ},
2. for all $\Gamma \in M$, the matrix contains $z_{\Gamma} - \sum_{i=0}^{|Y_{\Gamma}|} w_{\Gamma,i}$ columns of the form ψ_{Γ}, and
3. for all $\Gamma \in M$ and all $0 \leq i \leq |Y_{\Gamma}| - 1$, the matrix contains $w_{\Gamma,i}$ columns of the form $\delta_{\Gamma,i}$.

All columns of the matrix D are in the set F. Next, we prove that the matrix D satisfies the given intersection pattern.

For any $L \in Z_2$, suppose $L = 2^i + 2^j$, where $0 \leq i < j \leq \lambda - 1$. Since $\sum_{\Gamma \in M, 0 \leq k \leq |Y_{\Gamma}| - 1} \delta_{\Gamma,k} \geq 1$, there exists a $\Gamma^* \in M$ and a $0 \leq k^* \leq |Y_{\Gamma^*}| - 1$, such that $\delta_{\Gamma^*,k^*} \in \rho_L$ and $w_{\Gamma^*,k^*} \geq 1$. Therefore, the matrix D contains a column from the set ρ_L. Based on the definition of ρ_L, $C_L = c_i \cdot c_j = 0$. Thus, for any $L \in Z_2$, $C_L = 0$.

Now consider any $L \in P_2$. Suppose $L = 2^i + 2^j$, where $0 \leq i < j \leq \lambda - 1$. We argue that $C_L = c_i \cdot c_j \neq 0$. Otherwise, $c_i \cdot c_j = 0$. Therefore, there exists a column r in D, such that $D_{ir} = 0$ and $D_{jr} = 1$ or $D_{ir} = 1$ and $D_{jr} = 0$. Since all the columns of
\(D \) are in the set \(F \), thus the column \(D_r \) must be in the set \(Y \). However, based on the definition of representative compatible column pattern set, each element \(W \) in the set \(Y \) satisfies that for the \(L \in P_2 \), the situation that \(W_i = 0 \) and \(W_j = 1 \) or \(W_i = 1 \) and \(W_j = 0 \) does not happen. Therefore, the column \(D_r \) does not belong to the set \(Y \). We get a contradiction. Thus, for any \(L \in P_2 \), we have \(C^L \neq 0 \).

Since for any \(\Gamma \in Z_2 \), \(C^\Gamma = 0 \), for any \(\Gamma \in P_2 \), \(C^\Gamma \neq 0 \), and the given intersection pattern satisfies the conditions of Theorem 7, then, based on Theorem 7, we have that for any \(\Gamma \in Z \), \(C^\Gamma = 0 \) and for any \(\Gamma \in P \), \(C^\Gamma \neq 0 \). Thus, for all these \(\Gamma \in Z \),\(V(C^\Gamma) = v_\Gamma \).

Now consider any \(L \in P \). When \(L = 0 \), we have that \(V(C^L) = 2^n = v_0 \). For any \(L \in P \) and \(L > 0 \), \(L \) can be represented as \(L = \sum_{j=0}^{r-1} 2^j \), where \(1 \leq r \leq \lambda \) and \(0 \leq l_0 < \cdots < l_{r-1} \leq \lambda - 1 \). Since \(C^L \neq 0 \), the number of *'s in the cube-variable row vector \(C^L \) is the number of columns in \(D \), whose entries on the row \(l_0, l_1, \ldots, l_{r-1} \) are all *'s. Note that for any \(0 \leq \Gamma \leq 2^\lambda - 1 \), the column pattern \(\psi_\Gamma \) has all entries on the row \(l_0, l_1, \ldots, l_{r-1} \) being *'s if and only if \(\Gamma \geq L \). Since the root column vector of \(\delta_L \) is \(\psi_L \), thus for any \(\Gamma \in M \) and any \(0 \leq i \leq \vert \Psi_L \vert - 1 \), the column pattern \(\delta_{\Gamma,i} \) has all entries on the row \(l_0, l_1, \ldots, l_{r-1} \) being *'s if and only if \(\Gamma \geq L \). Therefore, the number of columns in \(D \), whose entries on the row \(l_0, l_1, \ldots, l_{r-1} \) are all *'s, is

\[
\sum_{\Gamma \in M, \Gamma \geq L} z_\Gamma + \sum_{\Gamma \in M, \Gamma \geq L} \left(z_\Gamma - \sum_{i=0}^{\vert \Psi_L \vert - 1} w_{\Gamma,i} \right) + \sum_{\Gamma \in M, \Gamma \geq L} \left(\sum_{i=0}^{\vert \Psi_L \vert - 1} w_{\Gamma,i} \right) \\
= \sum_{0 \leq \Gamma \leq 2^\lambda - 1, \Gamma \geq L} z_\Gamma = k_L.
\]

Therefore, the number of *'s in the row vector \(C^L \) is \(k_L \). Since \(C^L \neq 0 \), by Lemma 2, \(V(C^L) = 2^k_L \). Thus, for any \(L \in P \) and \(L > 0 \), \(V(C^L) = 2^k_L = v_L \).

In summary, for any \(0 \leq \Gamma \leq 2^\lambda - 1 \), \(V(C^\Gamma) = v_\Gamma \). Thus, the matrix \(D \) satisfies the given intersection pattern. \(\Box \)

Comment: The above proof provides a way of synthesizing a cube-variable matrix to satisfy the given intersection pattern when the three conditions are all satisfied.
Example 7

Given \(v_0 = 64, v_1 = 4, v_2 = 8, v_3 = 0, v_4 = 16, v_5 = 2, v_6 = 2, v_7 = 0, v_8 = 8, v_9 = 1, v_{10} = 2, v_{11} = 0, v_{12} = 0, v_{13} = 0, v_{14} = 0, v_{15} = 0 \), determine whether there exists a set of four cubes \(c_0, \ldots, c_3 \) on 6 variables \(x_0, \ldots, x_5 \) that satisfies the intersection pattern \((v_0, \ldots, v_{15}) \).

Solution: First, it is not hard to check that both Statement 1 and Statement 2 in Theorem 10 hold for the given pattern.

Now we check whether Statement 3 in Theorem 10 holds. For the given intersection pattern, we have \(P = \{0, 1, 2, 4, 5, 6, 8, 9, 10\} \), \(Z = \{3, 7, 11, 12, 13, 14, 15\} \), and

\[
\begin{align*}
k_0 &= 6, & k_1 &= 2, & k_2 &= 3, & k_4 &= 4, & k_5 &= 1, \\
k_6 &= 1, & k_8 &= 3, & k_9 &= 0, & k_{10} &= 1.
\end{align*}
\]

Notice that \(Z_2 = \{3, 12\} \). The corresponding representative compatible column pattern sets are \(\rho_3 = \{(01 * *)^T\} \) and \(\rho_{12} = \{(* * 01)^T\} \), respectively. Thus, we have

\[
Y = \bigcup_{T \in Z_2} \rho_T = \{(01 * *)^T, (* * 01)^T\}.
\]

Since the root column vector of \((01 * *)^T \) is \(\psi_{12} \) and the root column vector of \((* * 01)^T \) is \(\psi_3 \), we have \(M = \{3, 12\} \). We can partition the set \(Y \) as \(Y_3 = \{(* * 01)^T\} \) and \(Y_{12} = \{(01 * *)^T\} \).

Based on Definition 17, the element in the set \(Y_3 \) is defined as \(\delta_{3,0} = (* * 01)^T \) and the element in the set \(Y_{12} \) is defined as \(\delta_{12,0} = (01 * *)^T \). Notice that \(\rho_3 = \{\delta_{12,0}\} \) and \(\rho_{12} = \{\delta_{3,0}\} \).
We can derive the system of equations (11) for this example as

\[
\begin{align*}
\sum_{i=0}^{15} \tilde{z}_i &= 6 \\
\tilde{z}_1 + \tilde{z}_3 + \tilde{z}_5 + \tilde{z}_7 + \tilde{z}_9 + \tilde{z}_{11} + \tilde{z}_{13} + \tilde{z}_{15} &= 2 \\
\tilde{z}_2 + \tilde{z}_3 + \tilde{z}_6 + \tilde{z}_7 + \tilde{z}_{10} + \tilde{z}_{11} + \tilde{z}_{14} + \tilde{z}_{15} &= 3 \\
\tilde{z}_4 + \tilde{z}_5 + \tilde{z}_6 + \tilde{z}_7 + \tilde{z}_{12} + \tilde{z}_{13} + \tilde{z}_{14} + \tilde{z}_{15} &= 4 \\
\tilde{z}_5 + \tilde{z}_7 + \tilde{z}_{13} + \tilde{z}_{15} &= 1 \\
\tilde{z}_6 + \tilde{z}_7 + \tilde{z}_{14} + \tilde{z}_{15} &= 1 \\
\sum_{i=8}^{15} \tilde{z}_i &= 3 \\
\tilde{z}_9 + \tilde{z}_{11} + \tilde{z}_{13} + \tilde{z}_{15} &= 0 \\
\tilde{z}_{10} + \tilde{z}_{11} + \tilde{z}_{14} + \tilde{z}_{15} &= 1 \\
\tilde{w}_{3,0} &\leq \tilde{z}_3 \\
\tilde{w}_{12,0} &\leq \tilde{z}_{12} \\
\tilde{w}_{3,0} &\geq 1 \\
\tilde{w}_{12,0} &\geq 1
\end{align*}
\]

The above system of equations has a non-negative solution

\[
\begin{align*}
\tilde{z}_3 &= 1, \tilde{z}_4 &= 1, \tilde{z}_7 &= 1, \tilde{z}_{10} &= 1, \tilde{z}_{12} &= 2, \\
\tilde{z}_0 &= \tilde{z}_1 = \tilde{z}_2 = \tilde{z}_5 = \tilde{z}_6 = \tilde{z}_8 = 0, \\
\tilde{z}_9 &= \tilde{z}_{11} = \tilde{z}_{13} = \tilde{z}_{14} = \tilde{z}_{15} = 0, \\
\tilde{w}_{3,0} &= 1, \tilde{w}_{12,0} &= 1.
\end{align*}
\]

Thus, Statement 3 in Theorem 10 also holds. Therefore, there exists a cube-variable matrix to satisfy the given intersection pattern. Based on the proof of Theorem 10, we can synthesize a cube-variable matrix that satisfies the given intersection pattern based on the above non-negative solution as

\[
\begin{bmatrix}
* & 1 & * & 1 & 1 & 0 \\
* & 1 & * & * & 1 & 1 \\
0 & * & * & 1 & * & * \\
1 & 1 & 1 & * & * & *
\end{bmatrix}
\]

31
and the corresponding cubes are

\[
\begin{align*}
 c_0 &= x_1 \land x_3 \land x_4 \land \bar{x}_5 \\
 c_1 &= x_1 \land x_4 \land x_5 \\
 c_2 &= \bar{x}_0 \land x_3 \\
 c_3 &= x_0 \land x_1 \land x_2
\end{align*}
\]

It is not hard to verify that cubes \(c_0, \ldots, c_3\) satisfy the given intersection pattern. \(\square\)

5. Implementation

In this section, we will discuss the implementation of the procedure to solve the \(\lambda\)-cube intersection problem, based on the theory in Section 4.

5.1. Checking Statement 1 in Theorem 10

We can represent Statement 1 in Theorem 10 in an alternative way, as shown by the following theorem.

Theorem 11

The following two statements are equivalent:

1. The intersection pattern \((v_0, \ldots, v_{2^\lambda - 1})\) satisfies that for any \(0 \leq L \leq 2^\lambda - 1\), if \(v_L > 0\), then for any \(0 \leq \Gamma \leq 2^\lambda - 1\) such that \(\Gamma \leq L\), \(v_{\Gamma} > 0\).
2. The intersection pattern \((v_0, \ldots, v_{2^\lambda - 1})\) satisfies that for any \(1 \leq k \leq \lambda\) and any \(L \in P_k\), if \(0 \leq \Gamma \leq 2^\lambda - 1\) satisfies that \(||\Gamma|| = k - 1\) and \(\Gamma \leq L\), then \(v_{\Gamma} > 0\). \(\square\)

Proof: Statement 1 \(\Rightarrow\) Statement 2: Consider any \(L \in P_k\), where \(1 \leq k \leq \lambda\). By the definition of \(P_k\), we have \(v_L > 0\). Since Statement 1 holds, therefore, for any \(0 \leq \Gamma \leq 2^\lambda - 1\) such that \(||\Gamma|| = k - 1\) and \(\Gamma \leq L\), we have \(v_{\Gamma} > 0\). Thus, Statement 2 holds.

Statement 2 \(\Rightarrow\) Statement 1: When \(L = 0\), we have \(v_0 > 0\). Notice that the only \(0 \leq \Gamma \leq 2^\lambda - 1\) such that \(\Gamma \leq 0\) is \(\Gamma = 0\). Thus, for any \(0 \leq \Gamma \leq 2^\lambda - 1\) such that \(\Gamma \leq 0\), we have \(v_{\Gamma} > 0\).
Now consider any \(1 \leq L \leq 2^i - 1\) such that \(v_L > 0\). Suppose that \(\|L\| = r\). Then, \(1 \leq r \leq \lambda\) and \(L \in \mathcal{P}_r\). For any \(\Gamma\) such that \(0 \leq \Gamma \leq 2^i - 1\) and \(\Gamma \leq L\), suppose that \(\|\Gamma\| = t\). Then, we have \(0 \leq t \leq r\). We can find \(r - t + 1\) numbers \(\Gamma_t, \ldots, \Gamma_r\), such that \(\Gamma_t = \Gamma, \Gamma_r = L\), and for any \(t \leq k \leq r - 1\), \(\|\Gamma_k\| = k\) and \(\Gamma_k \leq \Gamma_{k+1}\). Since Statement 2 holds and \(v_{\Gamma_t} = v_L > 0\), we can see that for any \(t \leq k \leq r - 1\), \(v_{\Gamma_k} > 0\). In particular, \(v_{\Gamma_r} > 0\). Thus, for any \(0 \leq \Gamma \leq 2^i - 1\) such that \(\Gamma \leq L\), we have \(v_{\Gamma} > 0\). This concludes the proof. \(\square\)

Based on Theorem 11, in order to check whether Statement 1 in Theorem 10 holds, we only need to check whether Statement 2 in Theorem 11 holds. Thus, whether Statement 1 in Theorem 10 holds can be checked by the procedure shown in Algorithm 1.

Algorithm 1 CheckRuleOne\((\lambda, v)\): the procedure to check whether Statement 1 in Theorem 10 holds. It returns 1 if the statement holds; otherwise, it returns 0.

1: \{Given an integer \(\lambda \geq 1\) and a non-negative integer array \(v = (v_0, \ldots, v_{2^\lambda - 1})\).\}
2: \textbf{for} \(i \leftarrow 0\) to \(\lambda\) \textbf{do}
3: \(P_i \leftarrow \{\Gamma|0 \leq \Gamma \leq 2^i - 1, \|\Gamma\| = i, \text{ and } v_{\Gamma} > 0\}\);
4: \textbf{for} \(i \leftarrow 1\) to \(\lambda\) \textbf{do}
5: \textbf{for all} \(L \in P_i\) \textbf{do}
6: \textbf{for all} \(0 \leq \Gamma \leq 2^i - 1\) s.t. \(\|\Gamma\| = i - 1\) and \(\Gamma \leq L\) \textbf{do}
7: \textbf{if} \(v_{\Gamma} = 0\) \textbf{then}
8: \textbf{return} 0;
9: \textbf{return} 1;

5.2. Checking Statement 2 in Theorem 10

Whether Statement 2 in Theorem 10 holds can be checked by representing the given intersection pattern by an undirected graph and listing all maximal cliques of the undirected graph.

For a given intersection pattern on \(\lambda\) cubes, we can construct an undirected graph \(G(N, E)\) from that pattern, where \(N\) is a set of \(\lambda\) nodes \(n_0, \ldots, n_{\lambda - 1}\) and \(E\) is a set of edges. There is an edge between the node \(n_i\) and \(n_j\) (\(0 \leq i < j \leq \lambda - 1\)) if and only if the number \((2^i + 2^j)\) is in the set \(P_2\).
For example, we can represent the intersection pattern shown in Example 4 by the undirected graph shown in Figure 2.

\[
\begin{align*}
&n_0 \\
&n_1 \quad n_3 \\
&n_2
\end{align*}
\]

Figure 2: An undirected graph constructed from the intersection pattern of Example 4.

In graph theory, a **clique** in an undirected graph \(G(N,E)\) is defined as a subset \(Q\) of the node set \(N\), such that for every two nodes in \(Q\), there exists an edge connecting the two. A **maximal clique** is a clique that cannot be extended by including one more adjacent node.

For an intersection pattern, if a set of \(r (3 \leq r \leq \lambda)\) numbers \(0 \leq l_0 < \cdots < l_{r-1} \leq \lambda - 1\) satisfies that for any \(0 \leq i < j \leq r - 1\), \(v(2^{l_i} + 2^{l_j}) > 0\), then, the set of nodes \(n_{l_0}, \ldots, n_{l_{r-1}}\) forms a clique of the undirected graph constructed from the intersection pattern. Thus, Statement 2 in Theorem 10 can be stated in another way as: For any clique \(Q = \{n_{l_0}, \ldots, n_{l_{r-1}}\}\) of size \(r\) in the undirected graph constructed from the intersection pattern, where \(3 \leq r \leq \lambda\) and \(0 \leq l_0 < \cdots < l_{r-1} \leq \lambda - 1\), we have \(v_L > 0\), where \(L = \sum_{i=0}^{r-1} 2^{l_i}\).

The following theorem shows that if Statement 1 in Theorem 10 holds, then to check whether Statement 2 holds, we only need to focus on all maximal cliques of the undirected graph \(G(N,E)\).

Theorem 12

If Statement 1 in Theorem 10 holds, then Statement 2 in Theorem 10 holds if and only if for any maximal clique \(Q^* = \{n_{d_0}, \ldots, n_{d_t}\}\) of size \(t\) in the undirected graph constructed from the intersection pattern, where \(3 \leq t \leq \lambda\) and \(0 \leq d_0 < \cdots < d_{t-1} \leq \lambda - 1\), we have \(v_{L^*} > 0\), where \(L^* = \sum_{i=0}^{t-1} 2^{d_i}\). □

Proof: The “only if” part of the above theorem is obvious. We now prove the “if” part. Consider any clique \(Q = \{n_{l_0}, \ldots, n_{l_{r-1}}\}\) in the undirected graph \(G(N,E)\). By the definition of maximal clique, \(Q\) is contained in a maximal clique \(Q^* = \{n_{d_0}, \ldots, n_{d_t}\}\), where \(r \leq t \leq \lambda\), \(0 \leq d_0 < \cdots < d_{t-1} \leq \lambda - 1\). Since the clique \(Q\) is contained in the clique \(Q^*\),
we have $Q \subseteq Q^*$. Let $L = \sum_{i=0}^{r-1} 2^i$ and $L^* = \sum_{i=0}^{r-1} 2^i$. Since Q^* is a maximal clique, by the assumption, we have $v_{L^*} > 0$. Since $Q \subseteq Q^*$, we have $L \leq L^*$. Since Statement 1 in Theorem 10 holds, we obtain $v_L > 0$. Thus, for any clique $Q = \{n_0, \ldots, n_{r-1}\}$ in the undirected graph $G(N, E)$, we have $v_L > 0$. Therefore, Statement 2 in Theorem 10 holds.

Therefore, if Statement 1 in Theorem 10 holds, then whether Statement 2 in Theorem 10 holds can be answered by checking whether all v_L’s corresponding to all maximal cliques in the undirected graph $G(N, E)$ are greater than zero. The problem of listing all maximal cliques in an undirected graph is a classical problem in graph theory and can be solved, for example, by the Born-Kerbosch algorithm (Born and Kerbosch, 1973).

Assuming that Statement 1 in Theorem 10 holds, then whether Statement 2 in Theorem 10 holds can be checked by the procedure shown in Algorithm 2.

Algorithm 2 CheckRuleTwo(λ, v): the procedure to check whether Statement 2 in Theorem 10 holds under the assumption that Statement 1 in Theorem 10 holds. It returns 1 if the statement holds; otherwise, it returns 0.

1: \{Given an integer $\lambda \geq 1$ and a non-negative integer array $v = (v_0, \ldots, v_{2^\lambda-1})$.\}
2: $N \leftarrow \{n_0, \ldots, n_{2^\lambda-1}\}$; $E \leftarrow \phi$;
3: for $i \leftarrow 0$ to $\lambda - 1$ do
4: for $j \leftarrow i + 1$ to $\lambda - 1$ do
5: if $v_{2^i + 2^j} > 0$ then
6: $E \leftarrow E \cup \{e(n_i, n_j)\}$; \{Add an edge between the node n_i and the node n_j into the edge set E.\}
7: for all maximal clique Q in the graph $G(N, E)$ do
8: $L \leftarrow \sum_{i \in Q} 2^i$;
9: if $v_L = 0$ then
10: return 0;
11: return 1;
5.3. Checking Statement 3 in Theorem 10

The following theorem shows that to check whether the system of equations (11) has a non-negative solution, we only need to check whether an alternative system of equations with fewer unknowns has a non-negative solution.

Theorem 13

The system of equations (11) has a non-negative integer solution if and only if the system of equations on unknowns \hat{z}_Γ (for all $\Gamma \in \overline{M}$) and $\hat{w}_{\Gamma,i}$ (for all $\Gamma \in M$ and $0 \leq i \leq |Y_\Gamma| - 1$)

\[
\sum_{\Gamma \in M, \Lambda \geq L} \hat{z}_\Gamma + \sum_{\Gamma \in M, \Lambda \geq L} \sum_{i=0}^{|Y_\Gamma|-1} \hat{w}_{\Gamma,i} = k_L, \text{ for all } L \in P
\]

\[
\sum_{\Gamma \in M, \Lambda \in \delta \Gamma \in \Gamma \in \overline{M}, |Y_\Gamma|=1} \hat{w}_{\Gamma,i} \geq 1, \text{ for all } L \in \mathbb{Z}_2
\]

has a non-negative integer solution. □

Proof: “if” part: Suppose that a non-negative integer solution to the system of equations (12) is

\[
\begin{aligned}
\hat{z}_\Gamma &= z_\Gamma, & \text{for all } \Gamma \in \overline{M}, \\
\hat{w}_{\Gamma,i} &= w_{\Gamma,i}, & \text{for all } \Gamma \in M, 0 \leq i \leq |Y_\Gamma| - 1.
\end{aligned}
\]

We let

\[
\begin{aligned}
\check{z}_\Gamma &= z_\Gamma, & \text{for all } \Gamma \in \overline{M}, \\
\check{z}_\Gamma &= \sum_{i=0}^{|Y_\Gamma|-1} w_{\Gamma,i}, & \text{for all } \Gamma \in M, \\
\check{w}_{\Gamma,i} &= w_{\Gamma,i}, & \text{for all } \Gamma \in M, 0 \leq i \leq |Y_\Gamma| - 1.
\end{aligned}
\]

Then, it is not hard to see that \check{z}_Γ (for all $0 \leq \Gamma \leq 2^L - 1$) and $\check{w}_{\Gamma,i}$ (for all $\Gamma \in M$ and $0 \leq i \leq |Y_\Gamma| - 1$) form a non-negative integer solution to the system of equations (11).

“only if” part: Suppose that a non-negative integer solution to the system of equations (11) is

\[
\begin{aligned}
\check{z}_\Gamma &= z_\Gamma, & \text{for all } 0 \leq \Gamma \leq 2^L - 1, \\
\check{w}_{\Gamma,i} &= w_{\Gamma,i}, & \text{for all } \Gamma \in M, 0 \leq i \leq |Y_\Gamma| - 1.
\end{aligned}
\]
We let
\[
\begin{align*}
\hat{z}_\Gamma &= z_\Gamma, & \text{for all } \Gamma \in \overline{M}, \\
\hat{w}_{T,i} &= z_\Gamma - \sum_{i=0}^{|Y_\Gamma|-1} w_{T,i}, & \text{for all } \Gamma \in M, i = 0, \\
\hat{w}_{T,i} &= w_{T,i}, & \text{for all } \Gamma \in M, \\
1 \leq i &\leq |Y_\Gamma|-1.
\end{align*}
\] (14)

Then, for all \(\Gamma \in \overline{M} \), \(\hat{z}_\Gamma \geq 0 \) and for all \(\Gamma \in M \), \(1 \leq i \leq |Y_\Gamma|-1 \), \(\hat{w}_{T,i} \geq 0 \). Since for all \(\Gamma \in M \), \(\sum_{i=0}^{|Y_\Gamma|-1} w_{T,i} \leq z_\Gamma \), then we have that for all \(\Gamma \in M \),
\[
0 \leq z_\Gamma - \sum_{i=0}^{|Y_\Gamma|-1} w_{T,i} \leq z_\Gamma - \sum_{i=1}^{|Y_\Gamma|-1} w_{T,i} = \hat{w}_{T,0}.
\]

Based on Equation (11), (13), and (14), we have that for all \(L \in P \),
\[
\sum_{\Gamma \in M, \Gamma \geq L} \hat{z}_\Gamma + \sum_{\Gamma \in M, \Gamma \geq L} \sum_{i=0}^{|Y_\Gamma|-1} \hat{w}_{T,i}
= \sum_{\Gamma \in M, \Gamma \geq L} z_\Gamma + \sum_{\Gamma \in M, \Gamma \geq L} \sum_{0 \leq i \leq |Y_\Gamma|-1} \hat{z}_\Gamma = k_L.
\]

Since for all \(\Gamma \in M \), \(\sum_{i=0}^{|Y_\Gamma|-1} w_{T,i} \leq z_\Gamma \), then we have that for all \(\Gamma \in M \),
\[
\hat{w}_{T,0} = z_\Gamma - \sum_{i=1}^{|Y_\Gamma|-1} w_{T,i} \geq w_{T,0}.
\] (15)

Combining Equation (15) with Equation (11), (13), and (14), we have that for all \(\Gamma \in M \)
\[
1 \leq \sum_{\Gamma \in M \cap \Gamma \leq |Y_\Gamma|-1: \delta_\Gamma \in \delta \Gamma} w_{T,i} \leq \sum_{\Gamma \in M \cap \Gamma \leq |Y_\Gamma|-1: \delta_\Gamma \in \delta \Gamma} \hat{w}_{T,i}.
\]

Then, \(\hat{z}_\Gamma \) (for all \(\Gamma \in \overline{M} \)) and \(\hat{w}_{T,i} \) (for all \(\Gamma \in M \), \(1 \leq i \leq |Y_\Gamma|-1 \)) form a non-negative integer solution to the system of equations (12). \(\Box \)

Based on Theorem 13, to check whether Statement 3 in Theorem 10 holds, we only need to check whether the system of equations (12) has a non-negative solution. Note that the system of equations (12) has \(|M| \) fewer unknowns and \(|M| \) fewer inequalities than the original system of equations (11). Thus, a certain amount of computation will be saved.

37
5.4. The Procedure to Solve the λ-Cube Intersection Problem

Based on the above discussion, we give the procedure to solve the λ-cube intersection problem in Algorithm 3. In the procedure, the function CheckRuleOne(λ, v) and the function CheckRuleTwo(λ, v) are shown in Algorithm 1 and 2, respectively. The function RCCPS(Γ, λ, P_2) returns the representative compatible column pattern set for a $\Gamma \in Z_2$. The function

\[
\text{SetEqn}(P, Z_2, M, \overline{M}, \{k_L|L \in P\}, \{\rho_L|L \in Z_2\}, \{Y_L|L \in M\})
\]

returns the matrices A_{ze}, A_{we}, A_w and the column vectors b_e and b in the matrix representation of the system of equations (12), which is

\[
\begin{align*}
A_{ze} \vec{z} + A_{we} \vec{w} &= b_e, \\
A_w \vec{w} &\geq b,
\end{align*}
\]

where \vec{z} is a column vector of unknowns \hat{z}_Γ, for all $\Gamma \in \overline{M}$, and \vec{w} is a column vector of unknowns $\hat{w}_{\Gamma,i}$, for all $\Gamma \in M$ and $0 \leq i \leq |Y_\Gamma| - 1$. The function NonNegSln$(A_{ze}, A_{we}, b_e, A_w, b)$ finds a non-negative integer solution to the system of equations (16). If the system of equations (16) has a non-negative integer solution, then the function returns one such solution; otherwise, it returns ϕ. Given a non-negative solution (\vec{z}, \vec{w}) to the system of equations (16), the function SynCubes$(\vec{z}, \vec{w}, \lambda)$ synthesizes a set of λ cubes from that solution.

6. Experimental Results

We tested our algorithm on two-level logic benchmarks that accompany the two-level logic minimizer Espresso (Berkeley, 1993). For each benchmark, we ignored the output part of the cubes and just set the number of outputs to be one. We optimized each modified benchmark by Espresso and then call a program to generate an intersection pattern file of that benchmark. This intersection pattern file serves as the input to our program.

We performed two sets of experiments to test our algorithm. In the first set of experiments, we tested our algorithm on solving special cases. The main goal was to study
Algorithm 3 CubePattern(λ, v): the procedure to check whether there exists a set of λ cubes to satisfy the given intersection pattern $v = (v_0, \ldots, v_{2^{\lambda-1}})$. If the answer is yes, the procedure returns a set of cubes that satisfies the intersection pattern; otherwise, it returns ϕ.

1: {Given an integer $\lambda \geq 1$ and a non-negative integer array $v = (v_0, \ldots, v_{2^{\lambda-1}})$, where each entry is from the set $\{0, 2^0, 2^1, \ldots, 2^n\}$.)
2: $P \leftarrow \phi; Z \leftarrow \phi;$
3: for $i \leftarrow 0$ to $2^i - 1$ do
4: if $v_i > 0$ then
5: $P \leftarrow P \cup \{\Gamma\};$
6: $k_\Gamma \leftarrow \log_2 v_i;$
7: else { $v_i = 0$ }
8: $Z \leftarrow Z \cup \{\Gamma\};$
9: if CheckRuleOne(λ, v) = 0 then
10: return $\phi;$
11: if CheckRuleTwo(λ, v) = 0 then
12: return $\phi;$
13: $P_2 \leftarrow \{\Gamma|0 \leq \Gamma \leq 2^i - 1, \|\Gamma\| = 2,$ and $v_i > 0\};$
14: $Z_2 \leftarrow \{\Gamma|0 \leq \Gamma \leq 2^i - 1, \|\Gamma\| = 2,$ and $v_i = 0\};$
15: for all $\Gamma \in Z_2$ do
16: $\rho_\Gamma = \text{RCCPS}(\Gamma, \lambda, P_2);$
17: $Y \leftarrow \bigcup_{\Gamma \in Z_2} \rho_\Gamma;$$$
18: M \leftarrow \{\Gamma|0 \leq \Gamma \leq 2^i - 1, \text{s.t. } \exists W \in Y \text{ s.t. } t(W) = \psi_\Gamma\};$
19: $\overline{M} \leftarrow \{\Gamma|0 \leq \Gamma \leq 2^i - 1, \Gamma \notin M\};$
20: for all $\Gamma \in M$ do
21: $Y_\Gamma \leftarrow \{W|W \in Y \text{ and } t(W) = \psi_\Gamma\};$
22: $(A_v, A_w, b_v, A_n, b) \leftarrow \text{SetEqn}(P, Z_2, M, \overline{M},$
23: $\{k_2|L \in P\}, \{p_2|L \in Z_2\}, \{Y_2|L \in M\});$
24: $(\vec{z}, \vec{w}) \leftarrow \text{NonNegSln}(A_v, A_w, b_v, A_n, b);$ return $\phi;$
25: return SynCubes$(\vec{z}, \vec{w}, \lambda);$
the runtime of our algorithm. The benchmarks we tested are listed in Table 1. Since just a few benchmarks generated a special intersection pattern, we manually created some test cases. For example, the benchmark mark1_11 was created from the original benchmark mark1 by deleting five cubes. Notice that by deleting some cubes, the new benchmark still has its intersection of all cubes nonempty. Not surprisingly, the runtime increased exponentially with the number of cubes \(\lambda \). This is because the number of unknowns increases exponentially with \(\lambda \). However, since the size of the inputs to our program is \(O(2^\lambda) \), which is proportional to the number of intersections, the runtime complexity compared to the size of the inputs is linear. Further, for the benchmark shift, although the number of unknowns is more than 2 million, our algorithm is able to obtain the solution in about 70 seconds.

<table>
<thead>
<tr>
<th>circuit</th>
<th>#cubes</th>
<th>#inputs</th>
<th>#unknowns</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>newtpla2</td>
<td>9</td>
<td>10</td>
<td>512</td>
<td>0</td>
</tr>
<tr>
<td>in3</td>
<td>10</td>
<td>35</td>
<td>1024</td>
<td>0</td>
</tr>
<tr>
<td>mark1_11</td>
<td>11</td>
<td>20</td>
<td>2048</td>
<td>0.01</td>
</tr>
<tr>
<td>mark1_12</td>
<td>12</td>
<td>20</td>
<td>4096</td>
<td>0.04</td>
</tr>
<tr>
<td>mark1_13</td>
<td>13</td>
<td>20</td>
<td>8192</td>
<td>0.08</td>
</tr>
<tr>
<td>mark1_14</td>
<td>14</td>
<td>20</td>
<td>16384</td>
<td>0.2</td>
</tr>
<tr>
<td>mark1_15</td>
<td>15</td>
<td>20</td>
<td>32768</td>
<td>0.48</td>
</tr>
<tr>
<td>mark1</td>
<td>16</td>
<td>20</td>
<td>65536</td>
<td>1.18</td>
</tr>
<tr>
<td>shift_17</td>
<td>17</td>
<td>19</td>
<td>131072</td>
<td>1.73</td>
</tr>
<tr>
<td>shift_18</td>
<td>18</td>
<td>19</td>
<td>262144</td>
<td>3.19</td>
</tr>
<tr>
<td>shift_19</td>
<td>19</td>
<td>19</td>
<td>524288</td>
<td>7.84</td>
</tr>
<tr>
<td>shift_20</td>
<td>20</td>
<td>19</td>
<td>1048576</td>
<td>24.97</td>
</tr>
<tr>
<td>shift</td>
<td>21</td>
<td>19</td>
<td>2097152</td>
<td>71.33</td>
</tr>
</tbody>
</table>

In the second set of experiments, we tested our algorithm to solve general cases. We developed a program that takes an intersection pattern file and writes out the system of equations (12). This system of equations can be fed into specialized programs
to solve for non-negative solution. We list the numbers of unknowns and the numbers of equations on some benchmarks in Table 2. We compared the number of unknowns obtained by our method to the number of unknowns of a naive method in which all 3^4 combinations of column patterns are taken as unknowns to set up equations. The number of unknowns generated by our method and the number of unknowns generated by the naive method are listed in the fourth column and the fifth column of Table 2, respectively. The ratio of the number of unknowns generated by our method to that generated by the naive method is listed in the sixth column. We can see that our algorithm greatly reduced the number of unknowns: for most of the benchmarks, our method can reduce more than 95% of unknowns. Thus, we believe that our proposed algorithm will greatly reduce the runtime to solve the general case problem compared to the naive method.

Table 2: Number of unknowns and number of equations for general case problems.

<table>
<thead>
<tr>
<th>circuit</th>
<th>#cubes</th>
<th>#inputs</th>
<th>#unknowns</th>
<th>#equations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>luc</td>
<td>6</td>
<td>8</td>
<td>66</td>
<td>729</td>
</tr>
<tr>
<td>br2</td>
<td>6</td>
<td>12</td>
<td>228</td>
<td>729</td>
</tr>
<tr>
<td>tms</td>
<td>8</td>
<td>8</td>
<td>262</td>
<td>6561</td>
</tr>
<tr>
<td>prom2</td>
<td>9</td>
<td>9</td>
<td>512</td>
<td>19683</td>
</tr>
<tr>
<td>br1</td>
<td>10</td>
<td>12</td>
<td>8108</td>
<td>59049</td>
</tr>
<tr>
<td>vg2</td>
<td>10</td>
<td>25</td>
<td>1294</td>
<td>59049</td>
</tr>
<tr>
<td>exps</td>
<td>12</td>
<td>8</td>
<td>4130</td>
<td>531441</td>
</tr>
<tr>
<td>exp</td>
<td>12</td>
<td>12</td>
<td>4096</td>
<td>531441</td>
</tr>
<tr>
<td>newtpla</td>
<td>14</td>
<td>8</td>
<td>69470</td>
<td>4782969</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>15</td>
<td>127908</td>
<td>4782969</td>
</tr>
</tbody>
</table>
7. Conclusion and Future Work

In this paper, we introduced a new problem, the λ-cube intersection problem: Given a set of numbers corresponding to an intersection pattern of a set of λ cubes, we are asked to synthesize a set of cubes to satisfy the given intersection pattern, or show that there is no solution to the problem. We provide a rigorous mathematic treatment to this problem and derive a necessary and sufficient condition for the existence of a set of cubes to satisfy the given intersection pattern. The problem reduces to checking whether a set of linear equalities and inequalities has a non-negative integer solution.

As we mentioned in the introduction, a solution to the λ-cube intersection problem is an important step in solving the arithmetic two-level minimization problem. We are interested in the arithmetic two-level minimization problem because it applies to synthesis for probabilistic computation. We note that a solution to the problem could also be useful for generating weighted random testing patterns in built-in self-test (BIST) (Muradali et al., 1990).

In future work, we will apply the techniques proposed in this paper to develop a general solution to the arithmetic two-level minimization problem. We will also study the special structure of the set of equations we derived in this paper; we will propose an efficient way to find a non-negative solution to these equations.

