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Abstract. Major Histocompability Complex (MHC) Class I molecules
provide a pathway for cells to present endogenous peptides to the im-
mune system, allowing it to distinguish healthy cells from those infected
by pathogens. Software tools based on neural networks such as NetMHC
and NetMHCpan predict whether peptides will bind to variants of MHC
molecules. These tools are trained with experimental data, consisting of
the amino acid sequence of peptides and their observed binding strength.
Such tools generally do not explicitly consider hydrophobicity, a signifi-
cant biochemical factor relevant to peptide binding. It was observed that
these tools predict that some highly hydrophobic peptides will be strong
binders, which biochemical factors suggest is incorrect. This paper in-
vestigates the correlation of the hydrophobicity of 9-mer peptides with
their predicted binding strength to the MHC variant HLA-A*0201 for
these software tools. Two studies were performed, one using the data
that the neural networks were trained on and the other using a sample
of the human proteome. A significant bias within NetMHC-4.0 towards
predicting highly hydrophobic peptides as strong binders was observed
in both studies. This suggests that hydrophobicity should be included in
the training data of the neural networks. Retraining the neural networks
with such biochemical annotations of hydrophobicity could increase the
accuracy of their predictions, increasing their impact in applications such
as vaccine design and neoantigen identification.

Keywords: MHC Class I · Peptide · Machine Learning · Neural Net-
works.
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1 Introduction

The Human Leukocyte Antigen (HLA) gene system encodes cell-surface proteins
that play a key role in the immune system. HLA proteins of Major Histocom-
patibility Complex (MHC) Class I allow nucleated cells to present peptides from
within the cell. In these cells, endogenous proteins are eventually broken down
into small peptides, 8-15 amino acids long, by the proteasome. These antigens
are then trafficked to and loaded onto MHC Class I molecules. If sufficient bind-
ing affinity is achieved then a stable peptide-MHC (pMHC) complex is formed
and transported to the cell surface. Self-peptides, antigens encoded in the human
proteome, and foreign peptides, derived from pathogenic proteins, can thus be
presented. By surveilling these extracellular pMHCs, CD8+ T-cells can distin-
guish normal cells from pathogen-infected cells, and kill the latter.

The mechanics of peptide binding are specific to a given MHC variant. The
HLA genes are among the most diverse in the human population [9]. Thus the
set of all antigens presented by a person’s MHCs, labelled as their immunopep-
tidome, is unique and determines the capacity of their immune system. Since
the immune response of a person to, for instance, a viral infection like COVID-
19 is dependent on whether the foreign antigens presented by their MHCs are
distinguishable from self-peptides, understanding and predicting pMHC binding
is an important topic. In this paper, we have focused on NetMHC-4.0 [2] and
NetMHCpan-4.1 [25], two state-of-the-art neural network based methods that
predict pMHC binding. Both software tools have been applied in predicting can-
cer immune escape mechanisms [17], checkpoint blockade immunotherapy for
tumors [16], and identifying COVID-19 T-cell response targets [10].

While these tools provide valuable pMHC predictions, they do not model
pMHC binding at the molecular level or capture the entire antigen presentation
pathway’s effects. Hydrophobicity is a measure of how repulsive a molecule is to
water, often a consequence of nonpolarity. It plays a vital role in protein binding –
for example, the MHC molecule HLA-A*0201 (A2) contains hydrophobic binding
pockets that bind to correspondingly hydrophobic amino acids. Historically, im-
munopeptidomes have been predicted by modelling the interaction of the MHC
binding pocket and peptide, particularly focusing on biochemical attributes such
as sidechain conformations, solvation energies, electrostatic interactions, and hy-
drophobicity [32,30]. However with improved computing power, larger datasets,
and the need for interpolation due to the high polymorphism in MHC Class
I alleles [21], artificial intelligence based methods have become popular over
such mechanistic means of prediction. As NetMHC-4.0 and NetMHCpan-4.1 are
trained with sequence data and binding scores only, they lack the means of mod-
elling these biochemical attributes. Other software tools such as ANN-Hydro [6]
have utilized hydrophobicity in their immunogenic predictions, but do not pre-
dict binding affinity and are outperformed by NetMHCpan [18]. In our use of
NetMHC-4.0 we observed a prevalence of highly hydrophobic peptides in the
predicted A2 immunopeptidome. We found this unintuitive, since peptides in
which all amino acids are hydrophobes would not dissolve in the aqueous cy-
tosol within the cell and would thus likely not be available for binding with the
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MHC. We therefore sought to investigate the possibility that these tools were
over-estimating binding scores for such hydrophobic peptides. We conducted two
analyses on both NetMHC-4.0 and NetMHCpan-4.1, one using training data and
the other using a sample of the human proteome, to investigate the correlation
of predicted strong binders and hydrophobicity. We present our results and high-
light the unintended bias within NetMHC-4.0 for predicting highly hydrophobic
peptides as strong binders.

2 Methods

NetMHC and NetMHCpan allow users to input a list of peptides or whole pro-
teins, and test the binding of all peptides within a chosen MHC molecule. Both
tools return an adjusted score between 0 (for non binders) and 1 (for strong
binders) for all peptides. A notable distinction between the two is that NetMHC
is limited to predicting binding for MHC variants it is trained on, i.e. curated
MHCs. In contrast, NetMHCpan is capable of interpolating predictions for un-
curated MHCs if users provide the MHC amino acid sequence. This is achieved
through the integration of MHC sequence as a data feature in training, and
by a larger training dataset generated using a sophisticated machine learning
method called NNAlign MA [1]. NetMHCpan-4.1 consists of an ensemble of 50
neural networks, each with hidden layers containing 55 and 66 neurons, that
were trained using 5-fold cross validation. NetMHC-4.0 consists of 20 neural
networks, each with a single hidden layer of 5 neurons, that were trained using
a nested 5-fold cross validation approach [2].

2.1 Data Mining

NetMHC-4.0 was trained on CD8+ epitope binding affinity (BA) data from the
Immune Epitope Database. This data provides binding scores for peptides to
single allele MHCs, with a score that is scaled between 0 and 1 that measures
how strongly the peptide binds. NetMHCpan-4.1 was trained on BA data and
additional eluted ligand (EL) data from mass spectrometry experiments from
multiple sources [25]. The EL data includes multi-allele information that was
deconvoluted into single allele datapoints using NNAlign MA. EL score is binary
(either 0 or 1) since it checks if a peptide is present in a MHC’s immunopep-
tidome. The training data for NetMHCPan-4.1 is provided here.

This cumulative dataset contained more than 13 million pMHC data points,
that we filtered down to the 52569 9-mers interacting with HLA-A02:01 (A2) and
labelled as set TRN. 9-mers were the most frequent length of antigens in human
immunopeptidomes, and A2 was the most frequent MHC in the training dataset.
The distribution of all binding scores in TRN is shown in Fig. 1. Please note that
Fig. 1 contains two distinct graphs, the second being independently sorted to
visualize the cumulative distribution, as discussed in the caption. All peptides
from TRN were fed into NetMHC-4.0 to obtain their predicted BA scores, and

http://www.cbs.dtu.dk/suppl/immunology/NAR_NetMHCpan_NetMHCIIpan/
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then filtered for strong binders predicted by the tool’s default 0.5% rank thresh-
old. This set of predicted strong binding peptides by NetMHC-4.0 was labelled
as NSB (NetMHC Strong Binders). Similarly, the strong binders predicted by
NetMHCpan-4.1 from TRN based on their EL scores were compiled into the set
PSB (NetMHCPan Strong Binders).
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Fig. 1. Binding scores for all A2 9-mers in the NetMHCpan-4.1 training set TRN in blue,
NetMHC-4.0 Binding Affinity predicted scores in red, and NetMHCpan-4.1 Eluted
Ligand predicted scores in yellow. The top graph has been sorted on the training data,
and for each peptide index the NetMHC, NetMHCpan, and training scores are plotted
at that x coordinate. The Pearson correlation coefficient between the training scores
and NetMHC-4.0 was 0.8492, and between the training scores and NetMHCpan-4.1 was
0.863. In the bottom graph, each plot of scores was independently sorted to demonstrate
their cumulative distributions. Note that here the order of peptides is not conserved
across the 3 plots in the bottom graph.

From the scores shown in the second graph of Fig. 1, it was clear that the
pMHC binding data for A2 9-mers fitted a mostly binary data classification
problem, since only 15% peptides had a training score not equal to 0 or to 1.
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This was mostly due to the addition of EL data which provided a binary “yes” or
“no” answer to whether a given peptide was found attached to A2 through mass
spectroscopy. NetMHC-4.0 predicted scores, shown in red, were mostly located
in between the extremes of 0 and 1 due to the smaller training data consisting of
only BA assay data. It seemed that NetMHCpan-4.1, shown in yellow, was much
better at estimating non-binders (scores of 0), and fitted the S-curve transition
more tightly than NetMHC-4.0. This was reflected by the correlation coefficients
calculated in Fig. 1. However, neither neural network gave a definitive score of 1
to strong binders; they both use a rank based percentile threshold to determine
which peptides can be classified as strong binders.

We measured the lowest binding score in NSB and PSB as 0.659 and 0.419
respectively – i.e. all strong binders predicted by NetMHC-4.0 and NetMHCpan-
4.1 had binding scores greater than or equal to these thresholds, respectively.
We then filtered for all peptides in TRN that had experimental binding scores
greater than or equal to 0.659 into set NTF (NetMHC Threshold Filtering) and
those greater than or equal to 0.419 into set PTF (NetMHCpan Threshold Filter-
ing). Here, NTF contained all training peptides whose experimentally determined
binding scores would classify them as strong binders according to NetMHC-4.0,
and likewise for PTF and NetMHCpan-4.1.

Lastly, we gathered the protein sequences for all reviewed human proteins
from Uniprot [7], and randomly sampled 100 of them to create a set of 50804 9-
mers that we labelled as SHP (Sampled Human Proteome). These peptides were
also passed through NetMHC-4.0 and NetMHCpan-4.1, and the resulting list of
strong binders were filtered into sets NHB (NetMHC Human Binders) and PHB

(NetMHCPan Human Binders). Refer to Fig. 2 to see the distributions of these
predicted scores; note that there are no training data readily available for SHP.

The datasets TRN, NSB, PSB, NTF, and PTF were used for analyzing the per-
formance of both neural networks on training data, while the sets SHP, NHB, and
PHB were used for investigating the performance upon the human proteome.

2.2 Hydrophobicity

Hydrophobicity scales assign hydrophobicity values to single amino acids. They
are designed so the hydrophobicity of long peptides or protein chains can be es-
timated by simply linearly adding up the scores of their constituent amino acids.
While scales such as Kyte-Doolittle [14], Cornette [8], and Hopp-Woods [11] are
commonly used, we settled on the Moon scale [20] for calculating hydrophobicity
in our analyses. This newer scale differs from the scales listed above in that it
specifically focuses on the sidechain hydrophobicity and polarity of single amino
acids. Unlike the other scales, which are well suited for protein folding problems
that do not correlate with sidechain hydrophobicity [19], the Moon scale is more
representative of how small peptides would behave in an aqueous solution. The
scale ranks the 20 amino acids in decreasing order of hydrophobicity as follows:
F (1.43), L (1.26), I (1.15), P (1.13), Y (0.94), V (0.80), M (0.79), W (0.63), A
(0.46), C (0.24), E (-0.27), G (-0.30), T (-0.33), S (-0.35), D (-0.85), Q (-0.88),
N (-1.08), R (-1.19), H (-1.65), K (-1.93). For any given 9-mer, we calculated its
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Fig. 2. Predicted binding scores for all 9-mers in the 100 sampled human proteins in
SHP, according to NetMHC-4.0 in blue, and NetMHCpan-4.1 in red. In the top graph,
the sequence of peptides is conserved for both sequences and sorted by NetMHC scores.
In the bottom graph, both sequences are independently sorted and the sequence of
peptides is not conserved across both sequences.

total hydrophobicity by adding up the values for each of its 9 amino acids as
reported by the scale. For a given set of peptides, we measured the mean and
standard deviation of the hydrophobicity scores of all peptides in it. Refer to
Tables 1 and 2 for these measurements.

2.3 Hydrophobicity Filtering

An additional filter we applied was for peptides that were entirely hydrophobic.
For this, we only accepted peptides from TRN and SHP that had all 9 amino acids
with a Moon hydrophobicity score greater than 0.46 (i.e. that of Alanine). This
meant that the resulting sets of peptides were made entirely of Phenylalanine,
Leucine, Isoleucine, Proline, Tyrosine, Valine, Methionine, and Tryptophan –
highly hydrophobic and nonpolar amino acids. For TRN, only 55 such peptides
were found. The training scores and predicted scores for these are shown in Fig. 3.
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Table 1. Hydrophobicity values for the training data analysis

Set of Peptides Size of Set Mean Hydrophobicity Standard Deviation

TRN 52659 0.902 3.063
NTF 9268 2.794 2.502
PTF 10763 2.857 2.527
NSB 6498 3.458 2.364
PSB 8863 2.756 2.426

Table 2. Hydrophobicity values for the human proteome analysis

Set of Peptides Size of Set Mean Hydrophobicity Standard Deviation

SHP 50804 0.052 3.212
NHB 486 4.519 2.515
PHB 940 2.789 2.645

While the training data in blue showed non-binders, strong binders, and some
in between, NetMHC predicted no decisive non-binders and instead seemed to
model a uniform distribution. In contrast, NetMHCpan clearly identified non-
binders and was notably more conservative in assigning scores greater than 0.419
– it identified fewer strong binders than NetMHC did with its threshold of 0.659
and matched the training scores better with that threshold.
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Fig. 3. Binding scores for all highly hydrophobic 9-mers in TRN in blue, and the pre-
dicted scores by NetMHC-4.0 in red and NetMHCpan-4.1 in yellow. All of the 3 plots
were independently sorted to demonstrate their distributions. Peptides were considered
hydrophobic if all their amino acids were more hydrophobic than Alanine.

For SHP, 33 hydrophopbic 9-mers were found. Their predicted binding scores
by both neural networks are shown in Fig. 4. Once again, the NetMHC scores
in blue appeared almost linear and seemed to be uniformly distributed, while
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NetMHCpan in red clearly identified lots of non-binders, and fewer strong binders
(about 3).

0 5 10 15 20 25 30
Number of 9-mers

0.00

0.25

0.50

0.75

B
in

di
ng

 S
co

re

Sorted Scores for Hydrophobic A2 9-mers
NetMHC scores
NetMHCpan scores

Fig. 4. Predicted Binding scores for all highly hydrophobic 9-mers in SHP, with
NetMHC-4.0 in blue, and NetMHCpan-4.1 in red. Both plots were independently sorted
to demonstrate their distributions. Peptides were considered hydrophobic if all their
amino acids were more hydrophobic than Alanine.

2.4 2 Sample t-Test

For any 2 given sets of sampled numbers, the 2 Sample t-Test allows for com-
paring their means. Given an arbitrary set Si with mean µi, standard deviation
σi, and sample size ni, the t-statistic for two sets Si and Sj can be computed as

ti,j =
(µi − µj)√

(σ2
i /ni) + (σ2

j /nj)
.

For all our named sets, we conducted a cross-set 2 sample t-Test using Python’s
scipy.stats package to determine how likely shifts in the means of hydropho-
bicity scores for sets could be due to random sampling. This computer package
also calculated p-values, enumerating the probability of the two compared sets
having unequal means purely by chance, from the t-statistic.

3 Results

Consider the histograms of the hydrophobicity scores of all peptides in the
datasets TRN, PTF, and PSB shown in Fig. 5. The 52,659 peptides in TRN model a
gaussian distribution centered at mean hydrophobicity of 0.9. The other two sets
containing high binders according to NetMHCpan, PTF and PSB, shift to the right

https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
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Fig. 5. Histogram of the Hydrophobicity scores (on the x-axis) for sets TRN (in blue),
PTF (in red), and PSB (in yellow). Note how PTF and PSB are similar distributions. Refer
to section 2.2 for details.

with new means at 2.8 and 2.7 respectively. The shift towards more hydrophobic
9-mers is not unexpected – as the authors of NetMHC [2,22] depict in the A2
logos here, locations 2 and 9 in the A2 immunopeptidome 9-mers strongly favor
amino acids such as Leucine, Methionine, Valine, and Isoleucine. The reservation
of these 2 locations with these hydrophobic amino acids corresponds roughly to
2.0 shift in Moon hydrophobicity. The two sets possess comparable means and
standard deviations, visually and quantitatively as shown in Table 1.

In contrast, let us now focus on how NetMHC performed in a similar analysis.
In Fig. 6, the histograms for TRN, NTF, and NSB are shown. The set NTF in red,
consisting of peptides with experimentally measured binding scores greater than
0.659, is centered at a mean of 2.8. However set NSB in yellow, containing peptides
that NetMHC predicted as strong binders, is offset to the right with a mean of
3.4. This shift in the distribution of NSB points out an increase in hydrophobicity
of 9-mers that bind to A2. That is, NetMHC predicts the A2 immunopeptidome
to be more hydrophobic than the experimental data, or even NetMHCpan’s
predictions, suggest.

Looking at the histograms of the SHP, NHB, and PHB – i.e. the human pro-
teome sampled 9-mers and the strong binders predicted by the neural networks
from them – this shift in hydrophobicity increases. In Fig. 7, the SHP distribu-
tion is centered at about 0 (SHP and TRN do not share the same mean, which
we suspect is due to the Moon hydrophobicity scale being normalized on human
proteins). As in Fig. 5, the strong binders predicted by NetMHCpan are slightly
hydrophobic, resulting in a shift in the mean to 2.8 (similar to PTF and PSB).
However, the strong binders predicted by NetMHC in the human proteome are

http://www.cbs.dtu.dk/services/NetMHC/logos.php
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Fig. 6. Histogram of the Hydrophobicity scores (on the x-axis) for sets TRN (in blue),
NTF (in red), and NSB (in yellow). Clearly, NTF and NSB do not align, with NSB shifted
towards being more hydrophobic.

much more hydrophobic, with a shifted mean at 4.5. The gain in hydrophobicity
from SHP to NHB implied by this shift is even larger than the shift observed in
Fig. 6. Once again NetMHC overestimates how hydrophobic the A2 immunopep-
tidome is, and performs worse in the human proteome evaluation compared to
the training data.

The cross set T-test tested the equivalence of two given sets with p-values.
The smaller the p-value, the more likely the two sets have unequal means. We
clustered the sets based on the p-values from the cross set t-test. The clustering
criteria were: 1) two sets chosen from separate clusters should have a p-value
lower than 0.001; and 2) a set should have a p-value greater than 0.001 with at
least one set in its cluster. We obtained the following 5 clusters of sets: (TRN),
(SHP), (NTF, PTF, PSB, PHB), (NSB), and (NHB). The first two clusters cover the sets
that were put in to the neural networks, TRN and SHP. The third cluster includes
NetMHCpan’s predicted immunopeptidomes and the experimentally observed
immunopeptidome. The largest observed p-value in this cluster was 0.961 be-
tween NTF and PHB. The fourth and fifth clusters cover the set of predicted strong
binders according to NetMHC for the training data analysis and the human pro-
teome analysis respectively. The clusters signify how similar sets within them are,
and how different they are to sets outside that cluster. As the NSB and NHB sets
occupying their own clusters, the t-test highlights that NetMHC’s predictions
do not match up with the experimental immunopeptidomes and with NetMHC-
pan’s predictions. These different analyses confirm the increased hydrophobicity
of strong binding 9-mers from NetMHC’s prediction, and expose an unintended
bias in the neural network’s performance compared to NetMHCpan.
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Fig. 7. Histogram of the Hydrophobicity scores (on the x-axis) for sets SHP (in blue),
NHB (in red), and PHB (in yellow). Clearly, NHB and PHB do not align, with NHB shifted
towards being more hydrophobic.

4 Conclusion

Imagine a toy example of a hydrophilic box filled with water, containing a sin-
gle HLA-A*0201 protein and a completely hydrophobic 9-mer of LMIPFFILL.
The peptide would be repelled by the aqueous medium and latch itself to the
A2 protein. Now consider the cell interior, where the highly hydrophobic 9-mer
would be repelled by the cytosol and stick to whatever mildly hydrophobic sur-
face it finds nearby. This 9-mer would no longer be trafficked to any MHC for
binding, and would not be presented as an antigen on the cell surface despite
the 2nd and 9th amino acids highly favoring A2 binding. This cherry-picked
peptide was a non-binding peptide (EL score of 0) in the NetMHCpan-4.1 train-
ing dataset but was predicted as a strong binder by NetMHC-4.0 for A2 (BA
score of 0.792). In general, we do not expect completely hydrophobic antigens to
populate any MHC’s immunopeptidome. This example illustrates how the MHC
antigen presentation pathway do not support NetMHC’s prediction. Coupled
with our observations in Section 3 we conclude that NetMHC has a statistically
significant bias towards predicting hydrophobic peptides as strong binders to
A2. NetMHC may provide accurate binding affinity predictions, but does not
correctly reflect the composition of the A2 immunopeptidome with regards to
hydrophobicity. This bias suggests a false positive prediction problem, and limits
the utility of NetMHC in applications such as vaccine design [28] and neoantigen
identification [15].

In contrast, NetMHCpan-4.1 does not show a similar bias, potentially due to
its larger training data set and the use of MHC amino acid sequence as a data
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feature of the neural network. The MHC sequence could be allowing the neural
network to infer and model the binding mechanics of the A2 binding pockets.
Furthermore, eluted ligand data might allow NetMHCpan to capture aspects of
the entire antigen presentation pathway instead of estimating pMHC binding
strength alone. Lastly, the generated negative data in the training data [1] could
be lowering the predicted scores for hydrophobic non binders.

Changes could be implemented in future iterations of NetMHC to address
this bias, such as:

– Augmenting training data to include information on hydrophobicity of con-
stituent amino acids. This would entail adding an extra dimension or feature
to the training data that stores hydrophobicity scores. We recommend the
Moon Hydrophobicity scale for this purpose.

– Incorporating better negative data in training, and properly populating the
training dataset with more peptides from the human proteome. Note the
offset mean hydrophobicity of TRN compared to SHP in Tables 1 and 2, sug-
gesting that the current training data does not accurately represent the
human proteome.

– Designing a post-processing filter that can separate out false positives based
on hydrophobicity calculations.

Our emphasis is not on reverse engineering a neural network or trying to divine
molecular information from predicted values. Instead, we are highlighting the
importance of biochemical attributes pertinent to pMHC binding and cellular
machinery. A more insightful neural network, like NetMHCpan-4.1, will avoid
false positives and will potentially allow for better performance and greater im-
pact in applications. In future work, we will focus on identifying more significant
structural and mechanistic attributes that pose hurdles for AI-based methods.
We are developing a structural prediction tool capable of predicting peptide
binding with uncurated MHC molecules.
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