Stochastic Functions Using Sequential Logic

Naman Saraf, Kia Bazargan, David J Lilja, Marc D Riedel

Stochastic Computing

Computing using random bit streams

$$a = 3/6 b = 2/6$$

$$a = 2/6$$

$$0,0,0,0,1,0$$

$$c = 1/6$$

$$c = ab$$

$$a = 2/6$$

$$0,0,0,1,1,0$$

$$0,0,1,1,1,0$$

$$0,0,1,1,1,0$$

$$c = 3/6$$

$$s = 3/6$$

$$1,0,1,1,0,0$$

$$c = (1-s)a + sb$$

Conventional Computing

Fault Tolerance

• Largest error magnitude 1/2 in an *M*-bit binary fraction.

 $0.001 \rightarrow 0.101$

• Error in a random bit stream of length 2^M is always 2^{-M} .

 $00100000 \longrightarrow 00100010$

Combinational Logic

Input cost = degree of the polynomial

$$f(x) = \frac{1}{4} + \frac{9}{8}x - \frac{15}{8}x^2 + \frac{5}{4}x^3$$

Sequential Logic

Input cost = <u>one</u> random source

FSM Implementation

Results

