Chapter 12

TOLERATING FAULTS IN COUNTING NETWORKS

From the Proceedings of the 1999 Fault-Tolerant Parallel and Distributed
Systems Workshop, in “Dependable Network Computing”, by Kluwer
Academic Publishing

Marc D. Riedel and Jehoshua Bruck
California Institute of Technology, 136-93, Pasadena, CA 91125

Abstract Counting networks were proposed by Aspnes, Herlihy and Shavit [3] as
a low-contention concurrent data structure for multiprocessor coordina-
tion. We address the issue of tolerating faults in counting networks. In
our fault model, balancer objects experience responsive crash failures:
they behave correctly until they fail, and thereafter they are inacces-
sible. We propose two methods for tolerating such faults. The first is
based on a construction of a k-fault-tolerant balancer with 2(k + 1) bits
of memory. All balancers in a counting network are replaced by fault-
tolerant ones. Thus, a counting network with depth O(log? n), where
n is the width, is transformed into a k-fault-tolerant counting network
with depth O(klog® n).

We also consider the case where inaccessible balancers can be re-
mapped to spare balancers. We present a bound on the error in the
output token distribution of counting networks with remapped faulty
balancers (a generalization of the error bound for sorting networks with
faulty comparators presented by Yao & Yao [10]).

Our second method for tolerating faults is based on the construction
of a correction network. Given a token distribution with a bounded er-
ror, the correction network produces a token distribution that is smooth
(i.e., the number of tokens on each output wire differs by at most one —
a weaker condition than the step property of counting networks). The
correction network is constructed with fault-tolerant balancers. It is ap-
pended to a counting network in which faulty balancers are remapped
to spare balancers. In order to tolerate k faults, the correction network
has depth 2k(k + 1)(logn + 1), for a network of width n. Therefore,
this method results in a network with a smaller depth provided that
O(k) < O(logn). However, it is only applicable if it is possible to
remap faulty balancers.

1 INTRODUCTION

Shared counting is the basis for many fundamental multiprocessor
coordination algorithms, such as scheduling, load balancing and resource
allocation. Such algorithms typically require that processes cooperate to
assign consecutive integer values from a given range. The usual approach
is to serialize access to a single shared counter value. However, due
to high contention, accessing the counter value becomes a sequential
bottleneck.

Counting networks were proposed by Aspnes, Herlihy and Shavit [3].
A counting network implements a mod n shared counter: in response to
increment requests, processes are assigned counter values in the range
0,...,n—1. The counting network data structure consists of O(n log? n)
balancer objects, each with a single bit of memory. Counting networks
achieve high throughput by permitting multiple requests for counter val-
ues to proceed concurrently. Each request accesses only a small fraction
of the balancers, so the contention on each balancer is low. Aspnes et
al. give convincing experimental evidence that counting networks have
higher throughput than conventional implementations when the load on
the network is sufficiently high. For background information on count-
ing networks and an explanation of the terminology used, the reader is
referred to [3].

In this paper, we address the issue of tolerating faults in counting
networks. Our fault model consists of dynamic failures in the counting
network data structure. Specifically, we consider the case where bal-
ancers experience responsive crash failures [4]: they behave correctly
until they fail, and thereafter they are inaccessible.

We propose two methods for tolerating such faults. The first is based
on the construction of a k-fault-tolerant balancer with 2(k + 1) bits of
memory. All balancers in a counting network are replaced by fault-
tolerant ones. Thus, a counting network with depth O(log?n), where
n is the width, is transformed into a k-fault-tolerant counting network
with depth O(klog?n).!

We also consider the case where inaccessible balancers can be remapped
to spare balancers. A spare balancer is given a random initial state.
If this state is different from the original balancer’s state, the situa-
tion is equivalent to a spurious state transition. With remapped faulty
balancers, the distribution of tokens at the output of a counting net-
work may no longer satisfy the step property required for counting. We
present an upper bound on the error in the output token distribution of

LAll logarithms are base 2.

counting networks with faulty balancers. This is a generalization of the
error bound for sorting networks with faulty comparators presented by
Yao & Yao [10].

Our second method for tolerating faults is based on a construction of
a correction network. Given a token distribution with a bounded error,
the correction network produces a smooth output token distribution;
that is, the number of tokens on each output wire differs by at most one.
This is a weaker condition than the step property of counting networks;
however, for applications such as load balancing it is sufficient. The
correction network is constructed with fault-tolerant balancers. It is
appended to a counting network in which faulty balancers are remapped
to spare balancers. In order to tolerate k faults, the correction network
has depth 2k(k + 1)(logn + 1), for a network of width n. Therefore,
this method results in a network with a smaller depth provided that
O(k) < O(logn). However, it is only applicable if it is possible to remap
faulty balancers.

2 FAULT MODEL

Several researchers have investigated failure models for shared-memory
systems, and have proposed fault-tolerant constructions for shared ob-
jects [1][2][4][5]. In our fault model, balancers experience responsive
crash failures:

Fault model: The memory location holding a balancer’s state variable
behaves correctly until it suffers an atomic failure. Thereafter, it is
inaccessible.

Note that we do not consider process failures, which could result in
lost tokens. Also, we do not consider errors affecting the network wiring
information (the topology of the network is static).

Our strategy in coping with faults is to bypass inaccessible balancers.
Thus, tokens are forwarded out along the same wire that they are re-
ceived on (out the top if they are received on the top, or out the bottom
if they are received on the bottom). Denote by z; and x; the number
of tokens received prior to a fault on a balancer’s top and bottom input
wires, respectively; denote by z; and zj the number of tokens received
after the fault on the balancer’s top and bottom input wires, respec-
tively. Denote by y; and y;, the total number of tokens forwarded to its
top and bottom output wires, respectively. We have

T+ Tp Ty + Ty
yt:[tT-‘+$::, yb:{t2 J+w2

For what follows, we define the distance between two sequences y =
Yo, Yis--- »Yn—1 and y' = yg,¥,...,yl_; as one half the sum of the
absolute value of the difference of their entries:

1 n—1
D(y,y') =5 D lvi —vil-
=0

3 TOLERATING FAULTS (1ST METHOD)

We describe a construction of a fault-tolerant balancer with 2(k + 1)
bits, capable of tolerating &k faults. All balancers in a counting network
are replaced by fault-tolerant ones. Thus, we transform a counting net-
work with depth O(log? n) into a k-fault-tolerant counting network with
depth O(klog?n). We note that similar results could be obtained based
on the constructions for fault-tolerant shared objects presented by Afek
et al. [2] and Jayanti et al. [4].

3.1 FAULT-TOLERANT BALANCER

In our construction, shown in Figure 1, a k-fault-tolerant balancer
consists of k + 1 pseudo-balancers, each with two bits of memory. The
first bit describes its state: either up or down, indicating that the next to-
ken should be forwarded to the top or bottom output wire, respectively.
The second bit describes its status: either it is a leader or a follower.
Initially, the first pseudo-balancer is a leader while the others are fol-
lowers. An inaccessible pseudo-balancer is bypassed; that is, tokens are
forwarded directly to the next pseudo-balancer along the same wire that
they are received on. Tokens are colored with one of two colors: red
indicating that they have been balanced, or green indicating that they
have not. Tokens entering a fault-tolerant balancer are initially colored
green.

Leader:

A leader balances tokens in the usual fashion. It accepts tokens on
either of its input wires, and forwards them alternately to its top and
bottom output wires, toggling its state from up to down or vice-versa. It
colors all outgoing tokens red.

Follower:

A follower’s behavior differs for red and green tokens. A follower only
accepts red tokens in order: first one from its top input wire, then one

inputs outputs

Figure 1 A fault-tolerant balancer (L = leader, F = follower).

from its bottom input wire, and so on. As it receives red tokens, it
toggles its state from up to down, or vice-versa, and forwards the tokens
along the same wire that it receives them on. A green token is an
indication that all pseudo-balancers before it have failed. Thus, as soon
as a follower receives a green token on either input wire, it becomes a
leader and starts routing tokens as described above.

Theorem 12.1 With at most k faults, the outputs of a k-fault-tolerant
balancer are balanced.

Proof: Omitted. O

Note that there is fine-grained synchronization among processes shep-
herding tokens concurrently through a fault-tolerant balancer. If a fol-
lower receives a red token on the wrong wire (on the bottom wire if its
state is up, or on the top wire if its state is down) then it will block the
token. However, if this occurs, then the arrival of a token on the other
wire is pending.

4 REMAPPING FAULTY BALANCERS

With some implementations, it may be possible to remap faulty bal-
ancers to spare balancers. For shared-memory implementations, this
remapping is accomplished by redirecting the pointers of balancers pre-
ceding an inaccessible balancer to a spare balancer. The spare balancer
is given a random initial state. If this state is different from the original
balancer’s state, the situation is equivalent to an atomic write operation
(by some outside agent) to the memory location holding the balancer’s
state variable: up is change to down, or vice-versa.

Denote by z; and z;, the number of tokens received on a balancer’s
top and bottom input wires, respectively. Similarly, denote by y; and
yp the number of tokens forwarded to its top and bottom output wires,

respectively. Remapping the balancer alters its outputs as follows:

T+ Ty Ty + Tp
=[] g 22

for some f € {—1,0,1}.

Consider a balancer with outputs on wires 72 and j of some stage of
a balancing network. Suppose that the balancer does not experience
any faults. Let the output sequence of the stage be y = yo,y1,--.,
Yis--+ s Yjs--+ »Yn—1. If instead the balancer fails and is remapped, the
output sequence of the stage is y' = yo,¥1,--. ,¥},--- ,y;-,... Yn—1,
where y; = y; + f and y; = y; — f for some f € {~1,0,1}. Clearly, the
distance between y and y’ is less than or equal to 1. With k¥ remapped
balancers, the distance between the two sequences is less than or equal
to k.

4.1 ERROR BOUND

We will show the following result: remapping k faulty balancers causes
an error of at most k in the output token distribution of a balancing
network. The following analysis is a generalization of the error bound
for sorting networks with faulty comparators by Yao & Yao [10]. Related
work can also be found in the paper by Schimmler and Starke [6].

Lemma 12.1 Balancing the same entries in two sequences cannot in-
crease the distance between them.

Proof: Omitted. O

Theorem 12.2 Consider two identical balancing networks given the same
input sequence. If there are no faulty balancers in the first and there are
k remapped faulty balancers in the second, then the distance between the
output sequences of the two networks is less than or equal to k.

Proof: Omitted. O

4.2 SMOOTHNESS ERROR

We define an error measure on a sequence with respect to the smooth-
ness property.

Definition 12.1 The smoothness error of a sequence is the minimum
distance between that sequence and a smooth sequence of the same length
with the same total sum.

A fault-free counting network produces step output sequences. By
Theorem 12.2, the distance between the output sequence of a counting

network with k& remapped faulty balancers and a step sequence with the
same total sum is at most k. Since every step sequence is a smooth
sequence, the smoothness error of the output sequence of a counting
network with k& remapped faulty balancers is at most k.

5 TOLERATING FAULTS (2ND METHOD)

Our second method for tolerating faults is to append a correction net-
work to a counting network, as shown in Figure 2. The correction net-
work is constructed with fault-tolerant balancers. Faulty balancers in the
counting network are remapped to spare balancers, as described in Sec-
tion 4. We show the following property for the correction network: given
the output token distribution of a counting network with a bounded er-
ror, the correction network produces a token distribution that is smooth.
In order to tolerate k faults, the correction network consists of k(log n+1)
stages of fault-tolerant balancers, each with 2(k 4+ 1) bits. Thus, a k-
fault-tolerant construction consists of a counting network with depth
O(log? n) and a correction network with depth 2k(k + 1)(logn + 1). Re-
call that the construction in Section 3 had depth O(k log® n). Therefore,
this construction has a smaller depth provided that O(k) < O(logn).
Note, however, that this method is only applicable if it is possible to
remap faulty balancers.

i smooth
inputs
O(log*n) O(k2logn) outputs
— I
— -
Counting Network Correction
Network
— I
remapped faulty balancers fault-tolerant balancers

Figure 2 A correction network appended to a counting network.

5.1 CORRECTION NETWORK

In this section, we describe the construction of a balancing network
called a correction network with the following property: given an input
sequence with a smoothness error of at most k, it produces a smooth out-
put sequence. This network is appended to a counting network in which
at most k faulty balancers are remapped. Since the output sequence of

the counting network has a smoothness error of less than or equal to k,
the final output sequence from the correction network is smooth.

The correction network is constructed from blocks that we call
CORRECT [n] networks. To tolerate k remapped faulty balancers in a
counting network of width n, we append &k copies of CORRECT[n], as
shown in Figure 3. Each copy has logn + 1 stages. Note that the
CORRECT [n] networks are built with k-fault-tolerant balancers.

inputs Correction Network outputs
r-r--—-—------- - - - - - - - - - - =" - -" """ - - - " °- - - -~"-“-~"“-~" =~ = =/ = |
| |
Counting | |
> T » »
i ‘ CORRECT(n] . | CORRECTn] N
(k remapped | | 1 . k Do
faulty | . T
___»l balancers) ‘ I — |
! |
|

Figure 3 Correcting the output sequence of a counting network with at most &
remapped faulty balancers.

Before describing the construction of the correction network, we present
the following claim.

Claim 12.1 Balancing two entries of a sequence cannot increase the
smoothness error.

Proof: Omitted. d

5.1.1 BUTTERFLY[n] network. In order to construct a
CORRECT[n] network, we require a building block called the
BUTTERFLY [n] network. This network is constructed recursively as fol-
lows. For width two, it consists of a single balancer. For width n, where
n = 2™ for some m > 1, it consists of two BUTTERFLY[n/2] networks
with a balancer placed between output wire ¢ of the top network and
output wire ¢ of the bottom network, for each i = 0,...n/2 — 1 (see
Figure 4).

Claim 12.2 The output value on wire 0 of o BUTTERFLY [n] network is
the largest in the output sequence, and the output value on wire n — 1 is
the smallest.

Proof: Omitted. d

Note that it is necessary to balance all the corresponding outputs from
the two BUTTERFLY [n/2] networks, in addition to the outputs on wires

output

inputs wire # wire #
0
1
BUTTERFLY[n/2]
. n/2-2 - . n/2-2
| n/2-1 e n/2-1
0 n/2
— ! n/2+1
BUTTERFLY[n/2]
n/2-2 B
n/2-1

Figure 4 Recursive construction of the BUTTERFLY [n] network.
0 and n — 1; otherwise an unbalanced output could be the largest or the
smallest in the output sequence.

5.1.2 CORRECT [n] network. The CORRECT [n] network is obtained
by placing a balancer between wires 0 and n — 1 at the output of a
BUTTERFLY [n] network, as shown in Figure 5.

inputs wire # outputs

BUTTERFLY[n]

Figure 5 Construction of the CORRECT [n] network.

Theorem 12.3 Given an input sequence of length n with a smoothness
error of at most k, for some k > 0, k copies of the CORRECT [n] network
produce a smooth output sequence.

Proof: Omitted. O

6 DISCUSSION

The construction described in Section 5 ensures that the token counts
on the output wires differ by at most one. This smoothness property
is weaker than the step property of counting networks in the sense that
every step sequence is a smooth sequence, but not vice-versa. However,
for applications such as load-balancing, a smoothing network is just as
effective as a counting network.

We have presented an upper bound on the error resulting from remap-
ping faulty balancers in balancing networks: each remapped faulty bal-
ancer causes an error of at most one in the output token distribution.
Also, we have presented a practical method for tolerating up to k faults
in a counting network, with an increase in the depth of 2k(k+1)(log n+1)
for a network of width n. Provided that O(k?) < O(logn), this is small
compared to the depth of the counting network itself, which is O(log? n)
for all practical constructions. Future work is needed to derive lower
bounds on the depth of correction networks, and to extend these con-

cepts to diffracting trees, a variation of counting networks proposed by
Shavit et al. [7][8][9].

References

[1] Y. Afek, M. Merritt and G. Taubenfeld, “Benign Failure Models
for Shared-Memory”, Lecture Notes in Computer Science, Vol. 725,
pp- 69-83, 1993.

[2] Y. Afek, D.S. Greenberg, M. Merritt and G. Taubenfeld, “Comput-
ing with Faulty Shared Objects”, Journal of the ACM, Vol. 42., No.
6, pp. 1231-1274, 1995.

[3] J. Aspnes, M. Herlihy and N. Shavit, “Counting Networks”, Journal
of the ACM, Vol. 41, No. 5, pp. 1020-1048, 1994.

[4] P. Jayanti, T.D. Chandra and S. Toueg, “Fault-Tolerant Wait-Free
Shared Objects”, Journal of the ACM, Vol. 45, No. 3, pp. 451-500,
1998.

[5] A. Orda and M. Merritt, “Efficient Test-and-Set Constructions for
Faulty Shared-Memory”, Information Processing Letters, Vol. 62,
No. 1, pp. 41-46, 1997.

[6] M. Schimmler and C. Starke, “A Correction Network for N-Sorters”,
SIAM J. Comput., Vol. 18, No. 6, pp. 1179-1187, 1989.

[7] N. Shavit and A. Zemach, “Diffracting Trees”, ACM Trans. Com-
puter Systems, Vol. 14, No. 4, pp. 385-428, 1996.

8]

N. Shavit, E. Upfal, and A. Zemach, “A Steady State Analysis of
Diffracting Trees”, Proceedings 8th ACM Symp. Parallel Algorithms
and Architectures, pp. 33-41, 1996.

N. Shavit and D. Touitou, “Elimination Trees and the Construction
of Pools and Stacks”, Theory of Computing Systems, Vol. 30, No.
6, pp. 645-670, 1997.

A. Yao and F. Yao, “On Fault-Tolerant Networks for Sorting”,
SIAM J. Computing, Vol. 14, No. 1, pp. 120-128, 1985.

